Solve for b
b=-\frac{3x}{2}-4y+24.5
Solve for x
x=\frac{49-2b-8y}{3}
Graph
Share
Copied to clipboard
b+4y+3.5=28-1.5x
Subtract 1.5x from both sides.
b+3.5=28-1.5x-4y
Subtract 4y from both sides.
b=28-1.5x-4y-3.5
Subtract 3.5 from both sides.
b=24.5-1.5x-4y
Subtract 3.5 from 28 to get 24.5.
1.5x+4y+3.5=28-b
Subtract b from both sides.
1.5x+3.5=28-b-4y
Subtract 4y from both sides.
1.5x=28-b-4y-3.5
Subtract 3.5 from both sides.
1.5x=24.5-b-4y
Subtract 3.5 from 28 to get 24.5.
\frac{1.5x}{1.5}=\frac{24.5-b-4y}{1.5}
Divide both sides of the equation by 1.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{24.5-b-4y}{1.5}
Dividing by 1.5 undoes the multiplication by 1.5.
x=\frac{49-2b-8y}{3}
Divide 24.5-b-4y by 1.5 by multiplying 24.5-b-4y by the reciprocal of 1.5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}