Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

b+1=-\frac{1}{2}\left(b^{2}+2b+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(b+1\right)^{2}.
b+1=-\frac{1}{2}b^{2}-b-\frac{1}{2}
Use the distributive property to multiply -\frac{1}{2} by b^{2}+2b+1.
b+1+\frac{1}{2}b^{2}=-b-\frac{1}{2}
Add \frac{1}{2}b^{2} to both sides.
b+1+\frac{1}{2}b^{2}+b=-\frac{1}{2}
Add b to both sides.
2b+1+\frac{1}{2}b^{2}=-\frac{1}{2}
Combine b and b to get 2b.
2b+1+\frac{1}{2}b^{2}+\frac{1}{2}=0
Add \frac{1}{2} to both sides.
2b+\frac{3}{2}+\frac{1}{2}b^{2}=0
Add 1 and \frac{1}{2} to get \frac{3}{2}.
\frac{1}{2}b^{2}+2b+\frac{3}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-2±\sqrt{2^{2}-4\times \frac{1}{2}\times \frac{3}{2}}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 2 for b, and \frac{3}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-2±\sqrt{4-4\times \frac{1}{2}\times \frac{3}{2}}}{2\times \frac{1}{2}}
Square 2.
b=\frac{-2±\sqrt{4-2\times \frac{3}{2}}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
b=\frac{-2±\sqrt{4-3}}{2\times \frac{1}{2}}
Multiply -2 times \frac{3}{2}.
b=\frac{-2±\sqrt{1}}{2\times \frac{1}{2}}
Add 4 to -3.
b=\frac{-2±1}{2\times \frac{1}{2}}
Take the square root of 1.
b=\frac{-2±1}{1}
Multiply 2 times \frac{1}{2}.
b=-\frac{1}{1}
Now solve the equation b=\frac{-2±1}{1} when ± is plus. Add -2 to 1.
b=-1
Divide -1 by 1.
b=-\frac{3}{1}
Now solve the equation b=\frac{-2±1}{1} when ± is minus. Subtract 1 from -2.
b=-3
Divide -3 by 1.
b=-1 b=-3
The equation is now solved.
b+1=-\frac{1}{2}\left(b^{2}+2b+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(b+1\right)^{2}.
b+1=-\frac{1}{2}b^{2}-b-\frac{1}{2}
Use the distributive property to multiply -\frac{1}{2} by b^{2}+2b+1.
b+1+\frac{1}{2}b^{2}=-b-\frac{1}{2}
Add \frac{1}{2}b^{2} to both sides.
b+1+\frac{1}{2}b^{2}+b=-\frac{1}{2}
Add b to both sides.
2b+1+\frac{1}{2}b^{2}=-\frac{1}{2}
Combine b and b to get 2b.
2b+\frac{1}{2}b^{2}=-\frac{1}{2}-1
Subtract 1 from both sides.
2b+\frac{1}{2}b^{2}=-\frac{3}{2}
Subtract 1 from -\frac{1}{2} to get -\frac{3}{2}.
\frac{1}{2}b^{2}+2b=-\frac{3}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{2}b^{2}+2b}{\frac{1}{2}}=-\frac{\frac{3}{2}}{\frac{1}{2}}
Multiply both sides by 2.
b^{2}+\frac{2}{\frac{1}{2}}b=-\frac{\frac{3}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
b^{2}+4b=-\frac{\frac{3}{2}}{\frac{1}{2}}
Divide 2 by \frac{1}{2} by multiplying 2 by the reciprocal of \frac{1}{2}.
b^{2}+4b=-3
Divide -\frac{3}{2} by \frac{1}{2} by multiplying -\frac{3}{2} by the reciprocal of \frac{1}{2}.
b^{2}+4b+2^{2}=-3+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}+4b+4=-3+4
Square 2.
b^{2}+4b+4=1
Add -3 to 4.
\left(b+2\right)^{2}=1
Factor b^{2}+4b+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b+2\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
b+2=1 b+2=-1
Simplify.
b=-1 b=-3
Subtract 2 from both sides of the equation.