Solve for a
a=4-\frac{67}{n}
n\neq 0
Solve for n
n=-\frac{67}{a-4}
a\neq 4
Share
Copied to clipboard
an=-63+4n-4
Use the distributive property to multiply n-1 by 4.
an=-67+4n
Subtract 4 from -63 to get -67.
na=4n-67
The equation is in standard form.
\frac{na}{n}=\frac{4n-67}{n}
Divide both sides by n.
a=\frac{4n-67}{n}
Dividing by n undoes the multiplication by n.
a=4-\frac{67}{n}
Divide -67+4n by n.
an=-63+4n-4
Use the distributive property to multiply n-1 by 4.
an=-67+4n
Subtract 4 from -63 to get -67.
an-4n=-67
Subtract 4n from both sides.
\left(a-4\right)n=-67
Combine all terms containing n.
\frac{\left(a-4\right)n}{a-4}=-\frac{67}{a-4}
Divide both sides by a-4.
n=-\frac{67}{a-4}
Dividing by a-4 undoes the multiplication by a-4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}