Solve for a
a=-27.9
Share
Copied to clipboard
6\left(a-2\times \frac{a}{3}\right)+42-9+28.8=6
Multiply both sides of the equation by 6, the least common multiple of 3,2.
6\left(a-\frac{2a}{3}\right)+42-9+28.8=6
Express 2\times \frac{a}{3} as a single fraction.
6a+6\left(-\frac{2a}{3}\right)+42-9+28.8=6
Use the distributive property to multiply 6 by a-\frac{2a}{3}.
6a-2\times 2a+42-9+28.8=6
Cancel out 3, the greatest common factor in 6 and 3.
6a-4a+42-9+28.8=6
Multiply -2 and 2 to get -4.
2a+42-9+28.8=6
Combine 6a and -4a to get 2a.
2a+33+28.8=6
Subtract 9 from 42 to get 33.
2a+61.8=6
Add 33 and 28.8 to get 61.8.
2a=6-61.8
Subtract 61.8 from both sides.
2a=-55.8
Subtract 61.8 from 6 to get -55.8.
a=\frac{-55.8}{2}
Divide both sides by 2.
a=\frac{-558}{20}
Expand \frac{-55.8}{2} by multiplying both numerator and the denominator by 10.
a=-\frac{279}{10}
Reduce the fraction \frac{-558}{20} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}