Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

aa-324=4a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
a^{2}-324=4a
Multiply a and a to get a^{2}.
a^{2}-324-4a=0
Subtract 4a from both sides.
a^{2}-4a-324=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-324\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4 for b, and -324 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-4\right)±\sqrt{16-4\left(-324\right)}}{2}
Square -4.
a=\frac{-\left(-4\right)±\sqrt{16+1296}}{2}
Multiply -4 times -324.
a=\frac{-\left(-4\right)±\sqrt{1312}}{2}
Add 16 to 1296.
a=\frac{-\left(-4\right)±4\sqrt{82}}{2}
Take the square root of 1312.
a=\frac{4±4\sqrt{82}}{2}
The opposite of -4 is 4.
a=\frac{4\sqrt{82}+4}{2}
Now solve the equation a=\frac{4±4\sqrt{82}}{2} when ± is plus. Add 4 to 4\sqrt{82}.
a=2\sqrt{82}+2
Divide 4+4\sqrt{82} by 2.
a=\frac{4-4\sqrt{82}}{2}
Now solve the equation a=\frac{4±4\sqrt{82}}{2} when ± is minus. Subtract 4\sqrt{82} from 4.
a=2-2\sqrt{82}
Divide 4-4\sqrt{82} by 2.
a=2\sqrt{82}+2 a=2-2\sqrt{82}
The equation is now solved.
aa-324=4a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by a.
a^{2}-324=4a
Multiply a and a to get a^{2}.
a^{2}-324-4a=0
Subtract 4a from both sides.
a^{2}-4a=324
Add 324 to both sides. Anything plus zero gives itself.
a^{2}-4a+\left(-2\right)^{2}=324+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-4a+4=324+4
Square -2.
a^{2}-4a+4=328
Add 324 to 4.
\left(a-2\right)^{2}=328
Factor a^{2}-4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-2\right)^{2}}=\sqrt{328}
Take the square root of both sides of the equation.
a-2=2\sqrt{82} a-2=-2\sqrt{82}
Simplify.
a=2\sqrt{82}+2 a=2-2\sqrt{82}
Add 2 to both sides of the equation.