Evaluate
3a
Expand
3a
Share
Copied to clipboard
a+\left(\frac{9}{3}-\frac{1}{3}\right)\times \frac{a}{2}+\frac{2a}{3}
Convert 3 to fraction \frac{9}{3}.
a+\frac{9-1}{3}\times \frac{a}{2}+\frac{2a}{3}
Since \frac{9}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
a+\frac{8}{3}\times \frac{a}{2}+\frac{2a}{3}
Subtract 1 from 9 to get 8.
a+\frac{8a}{3\times 2}+\frac{2a}{3}
Multiply \frac{8}{3} times \frac{a}{2} by multiplying numerator times numerator and denominator times denominator.
a+\frac{4a}{3}+\frac{2a}{3}
Cancel out 2 in both numerator and denominator.
\frac{3a}{3}+\frac{4a}{3}+\frac{2a}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{3}{3}.
\frac{3a+4a}{3}+\frac{2a}{3}
Since \frac{3a}{3} and \frac{4a}{3} have the same denominator, add them by adding their numerators.
\frac{7a}{3}+\frac{2a}{3}
Combine like terms in 3a+4a.
\frac{7a+2a}{3}
Since \frac{7a}{3} and \frac{2a}{3} have the same denominator, add them by adding their numerators.
\frac{9a}{3}
Combine like terms in 7a+2a.
3a
Divide 9a by 3 to get 3a.
a+\left(\frac{9}{3}-\frac{1}{3}\right)\times \frac{a}{2}+\frac{2a}{3}
Convert 3 to fraction \frac{9}{3}.
a+\frac{9-1}{3}\times \frac{a}{2}+\frac{2a}{3}
Since \frac{9}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
a+\frac{8}{3}\times \frac{a}{2}+\frac{2a}{3}
Subtract 1 from 9 to get 8.
a+\frac{8a}{3\times 2}+\frac{2a}{3}
Multiply \frac{8}{3} times \frac{a}{2} by multiplying numerator times numerator and denominator times denominator.
a+\frac{4a}{3}+\frac{2a}{3}
Cancel out 2 in both numerator and denominator.
\frac{3a}{3}+\frac{4a}{3}+\frac{2a}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{3}{3}.
\frac{3a+4a}{3}+\frac{2a}{3}
Since \frac{3a}{3} and \frac{4a}{3} have the same denominator, add them by adding their numerators.
\frac{7a}{3}+\frac{2a}{3}
Combine like terms in 3a+4a.
\frac{7a+2a}{3}
Since \frac{7a}{3} and \frac{2a}{3} have the same denominator, add them by adding their numerators.
\frac{9a}{3}
Combine like terms in 7a+2a.
3a
Divide 9a by 3 to get 3a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}