Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{\left(2x-5\right)\left(x+4\right)}{y}\text{, }&y\neq 0\\a\in \mathrm{C}\text{, }&\left(x=\frac{5}{2}\text{ or }x=-4\right)\text{ and }y=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{\left(2x-5\right)\left(x+4\right)}{y}\text{, }&y\neq 0\\a\in \mathrm{R}\text{, }&\left(x=\frac{5}{2}\text{ or }x=-4\right)\text{ and }y=0\end{matrix}\right.
Solve for x (complex solution)
x=\frac{-\sqrt{169-8ay}-3}{4}
x=\frac{\sqrt{169-8ay}-3}{4}
Solve for x
x=\frac{-\sqrt{169-8ay}-3}{4}
x=\frac{\sqrt{169-8ay}-3}{4}\text{, }\left(y\geq 0\text{ or }a\geq \frac{169}{8y}\right)\text{ and }\left(y\leq 0\text{ or }a\leq \frac{169}{8y}\right)
Graph
Share
Copied to clipboard
ya=20-3x-2x^{2}
The equation is in standard form.
\frac{ya}{y}=-\frac{\left(2x-5\right)\left(x+4\right)}{y}
Divide both sides by y.
a=-\frac{\left(2x-5\right)\left(x+4\right)}{y}
Dividing by y undoes the multiplication by y.
ya=20-3x-2x^{2}
The equation is in standard form.
\frac{ya}{y}=-\frac{\left(2x-5\right)\left(x+4\right)}{y}
Divide both sides by y.
a=-\frac{\left(2x-5\right)\left(x+4\right)}{y}
Dividing by y undoes the multiplication by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}