Solve for b (complex solution)
\left\{\begin{matrix}\\b=-1\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=1\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=-1\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=1\end{matrix}\right.
Solve for a (complex solution)
a\in \mathrm{C}
b=-1\text{ or }x=1
Solve for a
a\in \mathrm{R}
b=-1\text{ or }x=1
Graph
Share
Copied to clipboard
-ab+bx=1-ab+b-x
Combine ax and -ax to get 0.
-ab+bx+ab=1+b-x
Add ab to both sides.
bx=1+b-x
Combine -ab and ab to get 0.
bx-b=1-x
Subtract b from both sides.
\left(x-1\right)b=1-x
Combine all terms containing b.
\frac{\left(x-1\right)b}{x-1}=\frac{1-x}{x-1}
Divide both sides by -1+x.
b=\frac{1-x}{x-1}
Dividing by -1+x undoes the multiplication by -1+x.
b=-1
Divide 1-x by -1+x.
-ab+bx=1-ab+b-x
Combine ax and -ax to get 0.
-ab+bx+ab=1+b-x
Add ab to both sides.
bx=1+b-x
Combine -ab and ab to get 0.
bx-b=1-x
Subtract b from both sides.
\left(x-1\right)b=1-x
Combine all terms containing b.
\frac{\left(x-1\right)b}{x-1}=\frac{1-x}{x-1}
Divide both sides by -1+x.
b=\frac{1-x}{x-1}
Dividing by -1+x undoes the multiplication by -1+x.
b=-1
Divide 1-x by -1+x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}