Solve for a
a=b+\frac{3}{x}
x\neq 0
Solve for b
b=a-\frac{3}{x}
x\neq 0
Graph
Share
Copied to clipboard
ax=bx+2+1
Add 1 to both sides.
ax=bx+3
Add 2 and 1 to get 3.
xa=bx+3
The equation is in standard form.
\frac{xa}{x}=\frac{bx+3}{x}
Divide both sides by x.
a=\frac{bx+3}{x}
Dividing by x undoes the multiplication by x.
a=b+\frac{3}{x}
Divide bx+3 by x.
bx+2=ax-1
Swap sides so that all variable terms are on the left hand side.
bx=ax-1-2
Subtract 2 from both sides.
bx=ax-3
Subtract 2 from -1 to get -3.
xb=ax-3
The equation is in standard form.
\frac{xb}{x}=\frac{ax-3}{x}
Divide both sides by x.
b=\frac{ax-3}{x}
Dividing by x undoes the multiplication by x.
b=a-\frac{3}{x}
Divide ax-3 by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}