Solve for b (complex solution)
b=-\frac{ax^{a-2}+x^{a}+3}{x}
x\neq 0
Solve for b
b=-\frac{ax^{a-2}+x^{a}+3}{x}
x>0\text{ or }\left(x<0\text{ and }Denominator(a)\text{bmod}2=1\right)
Graph
Share
Copied to clipboard
x^{a}+bx+3=-ax^{a-2}
Subtract ax^{a-2} from both sides. Anything subtracted from zero gives its negation.
bx+3=-ax^{a-2}-x^{a}
Subtract x^{a} from both sides.
bx=-ax^{a-2}-x^{a}-3
Subtract 3 from both sides.
xb=-ax^{a-2}-x^{a}-3
The equation is in standard form.
\frac{xb}{x}=\frac{-ax^{a-2}-x^{a}-3}{x}
Divide both sides by x.
b=\frac{-ax^{a-2}-x^{a}-3}{x}
Dividing by x undoes the multiplication by x.
b=-\frac{ax^{a-2}+x^{a}+3}{x}
Divide -ax^{a-2}-x^{a}-3 by x.
x^{a}+bx+3=-ax^{a-2}
Subtract ax^{a-2} from both sides. Anything subtracted from zero gives its negation.
bx+3=-ax^{a-2}-x^{a}
Subtract x^{a} from both sides.
bx=-ax^{a-2}-x^{a}-3
Subtract 3 from both sides.
xb=-ax^{a-2}-x^{a}-3
The equation is in standard form.
\frac{xb}{x}=\frac{-ax^{a-2}-x^{a}-3}{x}
Divide both sides by x.
b=\frac{-ax^{a-2}-x^{a}-3}{x}
Dividing by x undoes the multiplication by x.
b=-\frac{ax^{a-2}+x^{a}+3}{x}
Divide -ax^{a-2}-x^{a}-3 by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}