Solve for a
a=\frac{4-bx^{51}}{x^{71}}
x\neq 0
Solve for b
b=\frac{4-ax^{71}}{x^{51}}
x\neq 0
Graph
Share
Copied to clipboard
ax^{71}+6=10-bx^{51}
Subtract bx^{51} from both sides.
ax^{71}=10-bx^{51}-6
Subtract 6 from both sides.
ax^{71}=4-bx^{51}
Subtract 6 from 10 to get 4.
x^{71}a=4-bx^{51}
The equation is in standard form.
\frac{x^{71}a}{x^{71}}=\frac{4-bx^{51}}{x^{71}}
Divide both sides by x^{71}.
a=\frac{4-bx^{51}}{x^{71}}
Dividing by x^{71} undoes the multiplication by x^{71}.
a=-\frac{b}{x^{20}}+\frac{4}{x^{71}}
Divide 4-bx^{51} by x^{71}.
bx^{51}+6=10-ax^{71}
Subtract ax^{71} from both sides.
bx^{51}=10-ax^{71}-6
Subtract 6 from both sides.
bx^{51}=4-ax^{71}
Subtract 6 from 10 to get 4.
x^{51}b=4-ax^{71}
The equation is in standard form.
\frac{x^{51}b}{x^{51}}=\frac{4-ax^{71}}{x^{51}}
Divide both sides by x^{51}.
b=\frac{4-ax^{71}}{x^{51}}
Dividing by x^{51} undoes the multiplication by x^{51}.
b=-ax^{20}+\frac{4}{x^{51}}
Divide 4-ax^{71} by x^{51}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}