Factor
\left(a-1\right)\left(x^{2}-4\right)^{2}
Evaluate
\left(a-1\right)\left(x^{2}-4\right)^{2}
Graph
Quiz
Algebra
5 problems similar to:
a x ^ { 4 } - 8 a x ^ { 2 } + 16 a - x ^ { 4 } + 8 x ^ { 2 } - 16 =
Share
Copied to clipboard
a\left(x^{4}-8x^{2}+16\right)-\left(x^{4}-8x^{2}+16\right)
Do the grouping ax^{4}-8ax^{2}+16a-x^{4}+8x^{2}-16=\left(ax^{4}-8ax^{2}+16a\right)+\left(-x^{4}+8x^{2}-16\right), and factor out a in the first and -1 in the second group.
\left(x^{4}-8x^{2}+16\right)\left(a-1\right)
Factor out common term x^{4}-8x^{2}+16 by using distributive property.
\left(x^{2}-4\right)\left(x^{2}-4\right)
Consider x^{4}-8x^{2}+16. Find one factor of the form x^{k}+m, where x^{k} divides the monomial with the highest power x^{4} and m divides the constant factor 16. One such factor is x^{2}-4. Factor the polynomial by dividing it by this factor.
\left(x-2\right)\left(x+2\right)
Consider x^{2}-4. Rewrite x^{2}-4 as x^{2}-2^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-1\right)\left(x-2\right)^{2}\left(x+2\right)^{2}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}