Solve for a (complex solution)
a=-\frac{5}{x^{4}-1}
x\neq -1\text{ and }x\neq -i\text{ and }x\neq i\text{ and }x\neq 1
Solve for a
a=-\frac{5}{x^{4}-1}
|x|\neq 1
Solve for x (complex solution)
x=i\sqrt[4]{\frac{a-5}{a}}
x=\sqrt[4]{\frac{a-5}{a}}
x=-\sqrt[4]{\frac{a-5}{a}}
x=-i\sqrt[4]{\frac{a-5}{a}}\text{, }a\neq 0
Solve for x
x=\sqrt[4]{\frac{a-5}{a}}
x=-\sqrt[4]{\frac{a-5}{a}}\text{, }a<0\text{ or }a\geq 5
Graph
Share
Copied to clipboard
ax^{4}+5-a=0
Subtract a from both sides.
ax^{4}-a=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
\left(x^{4}-1\right)a=-5
Combine all terms containing a.
\frac{\left(x^{4}-1\right)a}{x^{4}-1}=-\frac{5}{x^{4}-1}
Divide both sides by x^{4}-1.
a=-\frac{5}{x^{4}-1}
Dividing by x^{4}-1 undoes the multiplication by x^{4}-1.
ax^{4}+5-a=0
Subtract a from both sides.
ax^{4}-a=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
\left(x^{4}-1\right)a=-5
Combine all terms containing a.
\frac{\left(x^{4}-1\right)a}{x^{4}-1}=-\frac{5}{x^{4}-1}
Divide both sides by x^{4}-1.
a=-\frac{5}{x^{4}-1}
Dividing by x^{4}-1 undoes the multiplication by x^{4}-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}