Solve for a
\left\{\begin{matrix}a=-\frac{bx^{2}+d}{x^{3}+1}\text{, }&x\neq -1\\a\in \mathrm{R}\text{, }&b=-d\text{ and }x=-1\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{ax^{3}+a+d}{x^{2}}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&a=-d\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
ax^{3}+a+d=-bx^{2}
Subtract bx^{2} from both sides. Anything subtracted from zero gives its negation.
ax^{3}+a=-bx^{2}-d
Subtract d from both sides.
\left(x^{3}+1\right)a=-bx^{2}-d
Combine all terms containing a.
\frac{\left(x^{3}+1\right)a}{x^{3}+1}=\frac{-bx^{2}-d}{x^{3}+1}
Divide both sides by x^{3}+1.
a=\frac{-bx^{2}-d}{x^{3}+1}
Dividing by x^{3}+1 undoes the multiplication by x^{3}+1.
a=-\frac{bx^{2}+d}{\left(x+1\right)\left(x^{2}-x+1\right)}
Divide -bx^{2}-d by x^{3}+1.
bx^{2}+a+d=-ax^{3}
Subtract ax^{3} from both sides. Anything subtracted from zero gives its negation.
bx^{2}+d=-ax^{3}-a
Subtract a from both sides.
bx^{2}=-ax^{3}-a-d
Subtract d from both sides.
x^{2}b=-ax^{3}-a-d
The equation is in standard form.
\frac{x^{2}b}{x^{2}}=\frac{-ax^{3}-a-d}{x^{2}}
Divide both sides by x^{2}.
b=\frac{-ax^{3}-a-d}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
b=-\frac{ax^{3}+a+d}{x^{2}}
Divide -ax^{3}-a-d by x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}