Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

ax^{2}-bx-ay^{2}=by
Subtract ay^{2} from both sides.
ax^{2}-ay^{2}=by+bx
Add bx to both sides.
\left(x^{2}-y^{2}\right)a=by+bx
Combine all terms containing a.
\left(x^{2}-y^{2}\right)a=bx+by
The equation is in standard form.
\frac{\left(x^{2}-y^{2}\right)a}{x^{2}-y^{2}}=\frac{b\left(x+y\right)}{x^{2}-y^{2}}
Divide both sides by x^{2}-y^{2}.
a=\frac{b\left(x+y\right)}{x^{2}-y^{2}}
Dividing by x^{2}-y^{2} undoes the multiplication by x^{2}-y^{2}.
a=\frac{b}{x-y}
Divide b\left(y+x\right) by x^{2}-y^{2}.
ax^{2}-bx-by=ay^{2}
Subtract by from both sides.
-bx-by=ay^{2}-ax^{2}
Subtract ax^{2} from both sides.
-bx-by=-ax^{2}+ay^{2}
Reorder the terms.
\left(-x-y\right)b=-ax^{2}+ay^{2}
Combine all terms containing b.
\left(-x-y\right)b=ay^{2}-ax^{2}
The equation is in standard form.
\frac{\left(-x-y\right)b}{-x-y}=\frac{a\left(y-x\right)\left(x+y\right)}{-x-y}
Divide both sides by -x-y.
b=\frac{a\left(y-x\right)\left(x+y\right)}{-x-y}
Dividing by -x-y undoes the multiplication by -x-y.
b=ax-ay
Divide a\left(x+y\right)\left(-x+y\right) by -x-y.
ax^{2}-bx-ay^{2}=by
Subtract ay^{2} from both sides.
ax^{2}-ay^{2}=by+bx
Add bx to both sides.
\left(x^{2}-y^{2}\right)a=by+bx
Combine all terms containing a.
\left(x^{2}-y^{2}\right)a=bx+by
The equation is in standard form.
\frac{\left(x^{2}-y^{2}\right)a}{x^{2}-y^{2}}=\frac{b\left(x+y\right)}{x^{2}-y^{2}}
Divide both sides by x^{2}-y^{2}.
a=\frac{b\left(x+y\right)}{x^{2}-y^{2}}
Dividing by x^{2}-y^{2} undoes the multiplication by x^{2}-y^{2}.
a=\frac{b}{x-y}
Divide b\left(y+x\right) by x^{2}-y^{2}.
ax^{2}-bx-by=ay^{2}
Subtract by from both sides.
-bx-by=ay^{2}-ax^{2}
Subtract ax^{2} from both sides.
-bx-by=-ax^{2}+ay^{2}
Reorder the terms.
\left(-x-y\right)b=-ax^{2}+ay^{2}
Combine all terms containing b.
\left(-x-y\right)b=ay^{2}-ax^{2}
The equation is in standard form.
\frac{\left(-x-y\right)b}{-x-y}=\frac{a\left(y-x\right)\left(x+y\right)}{-x-y}
Divide both sides by -x-y.
b=\frac{a\left(y-x\right)\left(x+y\right)}{-x-y}
Dividing by -x-y undoes the multiplication by -x-y.
b=ax-ay
Divide a\left(x+y\right)\left(-x+y\right) by -x-y.