Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{b}{x-y}\text{, }&x\neq y\\a\in \mathrm{C}\text{, }&x=-y\text{ or }\left(b=0\text{ and }x=y\right)\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=a\left(x-y\right)\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=-y\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{b}{x-y}\text{, }&x\neq y\\a\in \mathrm{R}\text{, }&x=-y\text{ or }\left(b=0\text{ and }x=y\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=a\left(x-y\right)\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=-y\end{matrix}\right.
Graph
Share
Copied to clipboard
ax^{2}-bx-ay^{2}=by
Subtract ay^{2} from both sides.
ax^{2}-ay^{2}=by+bx
Add bx to both sides.
\left(x^{2}-y^{2}\right)a=by+bx
Combine all terms containing a.
\left(x^{2}-y^{2}\right)a=bx+by
The equation is in standard form.
\frac{\left(x^{2}-y^{2}\right)a}{x^{2}-y^{2}}=\frac{b\left(x+y\right)}{x^{2}-y^{2}}
Divide both sides by x^{2}-y^{2}.
a=\frac{b\left(x+y\right)}{x^{2}-y^{2}}
Dividing by x^{2}-y^{2} undoes the multiplication by x^{2}-y^{2}.
a=\frac{b}{x-y}
Divide b\left(y+x\right) by x^{2}-y^{2}.
ax^{2}-bx-by=ay^{2}
Subtract by from both sides.
-bx-by=ay^{2}-ax^{2}
Subtract ax^{2} from both sides.
-bx-by=-ax^{2}+ay^{2}
Reorder the terms.
\left(-x-y\right)b=-ax^{2}+ay^{2}
Combine all terms containing b.
\left(-x-y\right)b=ay^{2}-ax^{2}
The equation is in standard form.
\frac{\left(-x-y\right)b}{-x-y}=\frac{a\left(y-x\right)\left(x+y\right)}{-x-y}
Divide both sides by -x-y.
b=\frac{a\left(y-x\right)\left(x+y\right)}{-x-y}
Dividing by -x-y undoes the multiplication by -x-y.
b=ax-ay
Divide a\left(x+y\right)\left(-x+y\right) by -x-y.
ax^{2}-bx-ay^{2}=by
Subtract ay^{2} from both sides.
ax^{2}-ay^{2}=by+bx
Add bx to both sides.
\left(x^{2}-y^{2}\right)a=by+bx
Combine all terms containing a.
\left(x^{2}-y^{2}\right)a=bx+by
The equation is in standard form.
\frac{\left(x^{2}-y^{2}\right)a}{x^{2}-y^{2}}=\frac{b\left(x+y\right)}{x^{2}-y^{2}}
Divide both sides by x^{2}-y^{2}.
a=\frac{b\left(x+y\right)}{x^{2}-y^{2}}
Dividing by x^{2}-y^{2} undoes the multiplication by x^{2}-y^{2}.
a=\frac{b}{x-y}
Divide b\left(y+x\right) by x^{2}-y^{2}.
ax^{2}-bx-by=ay^{2}
Subtract by from both sides.
-bx-by=ay^{2}-ax^{2}
Subtract ax^{2} from both sides.
-bx-by=-ax^{2}+ay^{2}
Reorder the terms.
\left(-x-y\right)b=-ax^{2}+ay^{2}
Combine all terms containing b.
\left(-x-y\right)b=ay^{2}-ax^{2}
The equation is in standard form.
\frac{\left(-x-y\right)b}{-x-y}=\frac{a\left(y-x\right)\left(x+y\right)}{-x-y}
Divide both sides by -x-y.
b=\frac{a\left(y-x\right)\left(x+y\right)}{-x-y}
Dividing by -x-y undoes the multiplication by -x-y.
b=ax-ay
Divide a\left(x+y\right)\left(-x+y\right) by -x-y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}