Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{1}{x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&x=b\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=x\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&a=\frac{1}{x}\text{ and }x\neq 0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{1}{x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&x=b\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=x\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&a=\frac{1}{x}\text{ and }x\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
ax^{2}-\left(abx+x\right)+b=0
Use the distributive property to multiply ab+1 by x.
ax^{2}-abx-x+b=0
To find the opposite of abx+x, find the opposite of each term.
ax^{2}-abx+b=x
Add x to both sides. Anything plus zero gives itself.
ax^{2}-abx=x-b
Subtract b from both sides.
\left(x^{2}-bx\right)a=x-b
Combine all terms containing a.
\frac{\left(x^{2}-bx\right)a}{x^{2}-bx}=\frac{x-b}{x^{2}-bx}
Divide both sides by x^{2}-bx.
a=\frac{x-b}{x^{2}-bx}
Dividing by x^{2}-bx undoes the multiplication by x^{2}-bx.
a=\frac{1}{x}
Divide x-b by x^{2}-bx.
ax^{2}-\left(abx+x\right)+b=0
Use the distributive property to multiply ab+1 by x.
ax^{2}-abx-x+b=0
To find the opposite of abx+x, find the opposite of each term.
-abx-x+b=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
-abx+b=-ax^{2}+x
Add x to both sides.
\left(-ax+1\right)b=-ax^{2}+x
Combine all terms containing b.
\left(1-ax\right)b=x-ax^{2}
The equation is in standard form.
\frac{\left(1-ax\right)b}{1-ax}=\frac{x\left(1-ax\right)}{1-ax}
Divide both sides by 1-ax.
b=\frac{x\left(1-ax\right)}{1-ax}
Dividing by 1-ax undoes the multiplication by 1-ax.
b=x
Divide x\left(-ax+1\right) by 1-ax.
ax^{2}-\left(abx+x\right)+b=0
Use the distributive property to multiply ab+1 by x.
ax^{2}-abx-x+b=0
To find the opposite of abx+x, find the opposite of each term.
ax^{2}-abx+b=x
Add x to both sides. Anything plus zero gives itself.
ax^{2}-abx=x-b
Subtract b from both sides.
\left(x^{2}-bx\right)a=x-b
Combine all terms containing a.
\frac{\left(x^{2}-bx\right)a}{x^{2}-bx}=\frac{x-b}{x^{2}-bx}
Divide both sides by x^{2}-bx.
a=\frac{x-b}{x^{2}-bx}
Dividing by x^{2}-bx undoes the multiplication by x^{2}-bx.
a=\frac{1}{x}
Divide x-b by x^{2}-bx.
ax^{2}-\left(abx+x\right)+b=0
Use the distributive property to multiply ab+1 by x.
ax^{2}-abx-x+b=0
To find the opposite of abx+x, find the opposite of each term.
-abx-x+b=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
-abx+b=-ax^{2}+x
Add x to both sides.
\left(-ax+1\right)b=-ax^{2}+x
Combine all terms containing b.
\left(1-ax\right)b=x-ax^{2}
The equation is in standard form.
\frac{\left(1-ax\right)b}{1-ax}=\frac{x\left(1-ax\right)}{1-ax}
Divide both sides by 1-ax.
b=\frac{x\left(1-ax\right)}{1-ax}
Dividing by 1-ax undoes the multiplication by 1-ax.
b=x
Divide x\left(-ax+1\right) by 1-ax.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}