Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

ax^{2}-a=b-bx
Subtract a from both sides.
\left(x^{2}-1\right)a=b-bx
Combine all terms containing a.
\frac{\left(x^{2}-1\right)a}{x^{2}-1}=\frac{b-bx}{x^{2}-1}
Divide both sides by x^{2}-1.
a=\frac{b-bx}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
a=-\frac{b}{x+1}
Divide b-bx by x^{2}-1.
a+b-bx=ax^{2}
Swap sides so that all variable terms are on the left hand side.
b-bx=ax^{2}-a
Subtract a from both sides.
\left(1-x\right)b=ax^{2}-a
Combine all terms containing b.
\frac{\left(1-x\right)b}{1-x}=\frac{a\left(x^{2}-1\right)}{1-x}
Divide both sides by 1-x.
b=\frac{a\left(x^{2}-1\right)}{1-x}
Dividing by 1-x undoes the multiplication by 1-x.
b=-a\left(x+1\right)
Divide a\left(x^{2}-1\right) by 1-x.
ax^{2}-a=b-bx
Subtract a from both sides.
\left(x^{2}-1\right)a=b-bx
Combine all terms containing a.
\frac{\left(x^{2}-1\right)a}{x^{2}-1}=\frac{b-bx}{x^{2}-1}
Divide both sides by x^{2}-1.
a=\frac{b-bx}{x^{2}-1}
Dividing by x^{2}-1 undoes the multiplication by x^{2}-1.
a=-\frac{b}{x+1}
Divide b-bx by x^{2}-1.
a+b-bx=ax^{2}
Swap sides so that all variable terms are on the left hand side.
b-bx=ax^{2}-a
Subtract a from both sides.
\left(1-x\right)b=ax^{2}-a
Combine all terms containing b.
\frac{\left(1-x\right)b}{1-x}=\frac{a\left(x^{2}-1\right)}{1-x}
Divide both sides by 1-x.
b=\frac{a\left(x^{2}-1\right)}{1-x}
Dividing by 1-x undoes the multiplication by 1-x.
b=-a\left(x+1\right)
Divide a\left(x^{2}-1\right) by 1-x.