a x ^ { 2 } + d x + e = 0
Solve for a
a=-\frac{dx+e}{x^{2}}
x\neq 0
Solve for d
d=-ax-\frac{e}{x}
x\neq 0
Graph
Share
Copied to clipboard
ax^{2}+e=-dx
Subtract dx from both sides. Anything subtracted from zero gives its negation.
ax^{2}=-dx-e
Subtract e from both sides.
x^{2}a=-dx-e
The equation is in standard form.
\frac{x^{2}a}{x^{2}}=\frac{-dx-e}{x^{2}}
Divide both sides by x^{2}.
a=\frac{-dx-e}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
a=-\frac{dx+e}{x^{2}}
Divide -dx-e by x^{2}.
dx+e=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
dx=-ax^{2}-e
Subtract e from both sides.
xd=-ax^{2}-e
The equation is in standard form.
\frac{xd}{x}=\frac{-ax^{2}-e}{x}
Divide both sides by x.
d=\frac{-ax^{2}-e}{x}
Dividing by x undoes the multiplication by x.
d=-ax-\frac{e}{x}
Divide -ax^{2}-e by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}