Solve for a (complex solution)
\left\{\begin{matrix}\\a=18-36y-by\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{36y+a-18}{y}\text{, }&y\neq 0\\b\in \mathrm{C}\text{, }&\left(a=18\text{ and }y=0\right)\text{ or }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=18-36y-by\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{36y+a-18}{y}\text{, }&y\neq 0\\b\in \mathrm{R}\text{, }&\left(a=18\text{ and }y=0\right)\text{ or }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
ax^{2}+bx^{2}y=18x^{2}-36yx^{2}
Use the distributive property to multiply 9x by 2x-4xy.
ax^{2}=18x^{2}-36yx^{2}-bx^{2}y
Subtract bx^{2}y from both sides.
ax^{2}=18x^{2}-byx^{2}-36yx^{2}
Reorder the terms.
x^{2}a=18x^{2}-byx^{2}-36yx^{2}
The equation is in standard form.
\frac{x^{2}a}{x^{2}}=\frac{x^{2}\left(18-36y-by\right)}{x^{2}}
Divide both sides by x^{2}.
a=\frac{x^{2}\left(18-36y-by\right)}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
a=18-36y-by
Divide \left(18-by-36y\right)x^{2} by x^{2}.
ax^{2}+bx^{2}y=18x^{2}-36yx^{2}
Use the distributive property to multiply 9x by 2x-4xy.
bx^{2}y=18x^{2}-36yx^{2}-ax^{2}
Subtract ax^{2} from both sides.
byx^{2}=-ax^{2}+18x^{2}-36yx^{2}
Reorder the terms.
yx^{2}b=18x^{2}-ax^{2}-36yx^{2}
The equation is in standard form.
\frac{yx^{2}b}{yx^{2}}=\frac{\left(18-a-36y\right)x^{2}}{yx^{2}}
Divide both sides by x^{2}y.
b=\frac{\left(18-a-36y\right)x^{2}}{yx^{2}}
Dividing by x^{2}y undoes the multiplication by x^{2}y.
b=\frac{18-a-36y}{y}
Divide \left(18-a-36y\right)x^{2} by x^{2}y.
ax^{2}+bx^{2}y=18x^{2}-36yx^{2}
Use the distributive property to multiply 9x by 2x-4xy.
ax^{2}=18x^{2}-36yx^{2}-bx^{2}y
Subtract bx^{2}y from both sides.
ax^{2}=18x^{2}-byx^{2}-36yx^{2}
Reorder the terms.
x^{2}a=18x^{2}-byx^{2}-36yx^{2}
The equation is in standard form.
\frac{x^{2}a}{x^{2}}=\frac{x^{2}\left(18-36y-by\right)}{x^{2}}
Divide both sides by x^{2}.
a=\frac{x^{2}\left(18-36y-by\right)}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
a=18-36y-by
Divide \left(18-by-36y\right)x^{2} by x^{2}.
ax^{2}+bx^{2}y=18x^{2}-36yx^{2}
Use the distributive property to multiply 9x by 2x-4xy.
bx^{2}y=18x^{2}-36yx^{2}-ax^{2}
Subtract ax^{2} from both sides.
byx^{2}=-ax^{2}+18x^{2}-36yx^{2}
Reorder the terms.
yx^{2}b=18x^{2}-ax^{2}-36yx^{2}
The equation is in standard form.
\frac{yx^{2}b}{yx^{2}}=\frac{\left(18-a-36y\right)x^{2}}{yx^{2}}
Divide both sides by x^{2}y.
b=\frac{\left(18-a-36y\right)x^{2}}{yx^{2}}
Dividing by x^{2}y undoes the multiplication by x^{2}y.
b=\frac{18-a-36y}{y}
Divide \left(18-a-36y\right)x^{2} by x^{2}y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}