Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{b}{x+2b}\text{, }&x\neq -2b\\a\in \mathrm{C}\text{, }&b=x\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{b}{x+2b}\text{, }&x\neq -2b\\a\in \mathrm{R}\text{, }&x=b\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=x\text{, }&\text{unconditionally}\\b=\frac{ax}{1-2a}\text{, }&a\neq \frac{1}{2}\\b\in \mathrm{C}\text{, }&x=0\text{ and }a=\frac{1}{2}\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=x\text{, }&\text{unconditionally}\\b=\frac{ax}{1-2a}\text{, }&a\neq \frac{1}{2}\\b\in \mathrm{R}\text{, }&x=0\text{ and }a=\frac{1}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
ax^{2}+b^{2}-2ab^{2}=bx-abx
Use the distributive property to multiply b-ab by x.
ax^{2}+b^{2}-2ab^{2}+abx=bx
Add abx to both sides.
ax^{2}-2ab^{2}+abx=bx-b^{2}
Subtract b^{2} from both sides.
\left(x^{2}-2b^{2}+bx\right)a=bx-b^{2}
Combine all terms containing a.
\left(x^{2}+bx-2b^{2}\right)a=bx-b^{2}
The equation is in standard form.
\frac{\left(x^{2}+bx-2b^{2}\right)a}{x^{2}+bx-2b^{2}}=\frac{b\left(x-b\right)}{x^{2}+bx-2b^{2}}
Divide both sides by x^{2}-2b^{2}+bx.
a=\frac{b\left(x-b\right)}{x^{2}+bx-2b^{2}}
Dividing by x^{2}-2b^{2}+bx undoes the multiplication by x^{2}-2b^{2}+bx.
a=\frac{b}{x+2b}
Divide b\left(x-b\right) by x^{2}-2b^{2}+bx.
ax^{2}+b^{2}-2ab^{2}=bx-abx
Use the distributive property to multiply b-ab by x.
ax^{2}+b^{2}-2ab^{2}+abx=bx
Add abx to both sides.
ax^{2}-2ab^{2}+abx=bx-b^{2}
Subtract b^{2} from both sides.
\left(x^{2}-2b^{2}+bx\right)a=bx-b^{2}
Combine all terms containing a.
\left(x^{2}+bx-2b^{2}\right)a=bx-b^{2}
The equation is in standard form.
\frac{\left(x^{2}+bx-2b^{2}\right)a}{x^{2}+bx-2b^{2}}=\frac{b\left(x-b\right)}{x^{2}+bx-2b^{2}}
Divide both sides by x^{2}-2b^{2}+bx.
a=\frac{b\left(x-b\right)}{x^{2}+bx-2b^{2}}
Dividing by x^{2}-2b^{2}+bx undoes the multiplication by x^{2}-2b^{2}+bx.
a=\frac{b}{x+2b}
Divide b\left(x-b\right) by x^{2}-2b^{2}+bx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}