Solve for B (complex solution)
\left\{\begin{matrix}B=-ax+\frac{C}{x}\text{, }&x\neq 0\\B\in \mathrm{C}\text{, }&C=0\text{ and }x=0\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=-ax+\frac{C}{x}\text{, }&x\neq 0\\B\in \mathrm{R}\text{, }&C=0\text{ and }x=0\end{matrix}\right.
Solve for C
C=x\left(ax+B\right)
Graph
Share
Copied to clipboard
Bx-C=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
Bx=-ax^{2}+C
Add C to both sides.
xB=C-ax^{2}
The equation is in standard form.
\frac{xB}{x}=\frac{C-ax^{2}}{x}
Divide both sides by x.
B=\frac{C-ax^{2}}{x}
Dividing by x undoes the multiplication by x.
B=-ax+\frac{C}{x}
Divide C-ax^{2} by x.
Bx-C=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
Bx=-ax^{2}+C
Add C to both sides.
xB=C-ax^{2}
The equation is in standard form.
\frac{xB}{x}=\frac{C-ax^{2}}{x}
Divide both sides by x.
B=\frac{C-ax^{2}}{x}
Dividing by x undoes the multiplication by x.
B=-ax+\frac{C}{x}
Divide C-ax^{2} by x.
Bx-C=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
-C=-ax^{2}-Bx
Subtract Bx from both sides.
\frac{-C}{-1}=-\frac{x\left(ax+B\right)}{-1}
Divide both sides by -1.
C=-\frac{x\left(ax+B\right)}{-1}
Dividing by -1 undoes the multiplication by -1.
C=x\left(ax+B\right)
Divide -x\left(ax+B\right) by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}