Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{ax^{2}+24x-\left(mx\right)^{2}-9}{mx+1}\text{, }&m=0\text{ or }x\neq -\frac{1}{m}\\b\in \mathrm{C}\text{, }&a=10m^{2}+24m\text{ and }x=-\frac{1}{m}\text{ and }m\neq 0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{ax^{2}+24x-\left(mx\right)^{2}-9}{mx+1}\text{, }&m=0\text{ or }x\neq -\frac{1}{m}\\b\in \mathrm{R}\text{, }&a=10m^{2}+24m\text{ and }x=-\frac{1}{m}\text{ and }m\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
ax^{2}+24x+b-\left(m^{2}x^{2}-bmx\right)=9
Subtract m^{2}x^{2}-bmx from both sides.
ax^{2}+24x+b-m^{2}x^{2}+bmx=9
To find the opposite of m^{2}x^{2}-bmx, find the opposite of each term.
24x+b-m^{2}x^{2}+bmx=9-ax^{2}
Subtract ax^{2} from both sides.
b-m^{2}x^{2}+bmx=9-ax^{2}-24x
Subtract 24x from both sides.
b+bmx=9-ax^{2}-24x+m^{2}x^{2}
Add m^{2}x^{2} to both sides.
\left(1+mx\right)b=9-ax^{2}-24x+m^{2}x^{2}
Combine all terms containing b.
\left(mx+1\right)b=m^{2}x^{2}-ax^{2}-24x+9
The equation is in standard form.
\frac{\left(mx+1\right)b}{mx+1}=\frac{m^{2}x^{2}-ax^{2}-24x+9}{mx+1}
Divide both sides by mx+1.
b=\frac{m^{2}x^{2}-ax^{2}-24x+9}{mx+1}
Dividing by mx+1 undoes the multiplication by mx+1.
ax^{2}+24x+b-\left(m^{2}x^{2}-bmx\right)=9
Subtract m^{2}x^{2}-bmx from both sides.
ax^{2}+24x+b-m^{2}x^{2}+bmx=9
To find the opposite of m^{2}x^{2}-bmx, find the opposite of each term.
24x+b-m^{2}x^{2}+bmx=9-ax^{2}
Subtract ax^{2} from both sides.
b-m^{2}x^{2}+bmx=9-ax^{2}-24x
Subtract 24x from both sides.
b+bmx=9-ax^{2}-24x+m^{2}x^{2}
Add m^{2}x^{2} to both sides.
\left(1+mx\right)b=9-ax^{2}-24x+m^{2}x^{2}
Combine all terms containing b.
\left(mx+1\right)b=m^{2}x^{2}-ax^{2}-24x+9
The equation is in standard form.
\frac{\left(mx+1\right)b}{mx+1}=\frac{m^{2}x^{2}-ax^{2}-24x+9}{mx+1}
Divide both sides by mx+1.
b=\frac{m^{2}x^{2}-ax^{2}-24x+9}{mx+1}
Dividing by mx+1 undoes the multiplication by mx+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}