Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{3\left(-2x+2b-1\right)}{2\left(3x-2b\right)}\text{, }&x\neq \frac{2b}{3}\\a\in \mathrm{C}\text{, }&x=1\text{ and }b=\frac{3}{2}\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{3\left(2ax-2x-1\right)}{2\left(3-2a\right)}\text{, }&a\neq \frac{3}{2}\\b\in \mathrm{C}\text{, }&x=1\text{ and }a=\frac{3}{2}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{3\left(-2x+2b-1\right)}{2\left(3x-2b\right)}\text{, }&x\neq \frac{2b}{3}\\a\in \mathrm{R}\text{, }&x=1\text{ and }b=\frac{3}{2}\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{3\left(2ax-2x-1\right)}{2\left(3-2a\right)}\text{, }&a\neq \frac{3}{2}\\b\in \mathrm{R}\text{, }&x=1\text{ and }a=\frac{3}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
6ax+6b-2\left(3x+2ab\right)=3
Multiply both sides of the equation by 6, the least common multiple of 3,2.
6ax+6b-6x-4ab=3
Use the distributive property to multiply -2 by 3x+2ab.
6ax-6x-4ab=3-6b
Subtract 6b from both sides.
6ax-4ab=3-6b+6x
Add 6x to both sides.
\left(6x-4b\right)a=3-6b+6x
Combine all terms containing a.
\left(6x-4b\right)a=6x-6b+3
The equation is in standard form.
\frac{\left(6x-4b\right)a}{6x-4b}=\frac{6x-6b+3}{6x-4b}
Divide both sides by 6x-4b.
a=\frac{6x-6b+3}{6x-4b}
Dividing by 6x-4b undoes the multiplication by 6x-4b.
a=\frac{3\left(2x-2b+1\right)}{2\left(3x-2b\right)}
Divide 3-6b+6x by 6x-4b.
6ax+6b-2\left(3x+2ab\right)=3
Multiply both sides of the equation by 6, the least common multiple of 3,2.
6ax+6b-6x-4ab=3
Use the distributive property to multiply -2 by 3x+2ab.
6b-6x-4ab=3-6ax
Subtract 6ax from both sides.
6b-4ab=3-6ax+6x
Add 6x to both sides.
\left(6-4a\right)b=3-6ax+6x
Combine all terms containing b.
\left(6-4a\right)b=3+6x-6ax
The equation is in standard form.
\frac{\left(6-4a\right)b}{6-4a}=\frac{3+6x-6ax}{6-4a}
Divide both sides by 6-4a.
b=\frac{3+6x-6ax}{6-4a}
Dividing by 6-4a undoes the multiplication by 6-4a.
b=\frac{3\left(1+2x-2ax\right)}{2\left(3-2a\right)}
Divide 3-6ax+6x by 6-4a.
6ax+6b-2\left(3x+2ab\right)=3
Multiply both sides of the equation by 6, the least common multiple of 3,2.
6ax+6b-6x-4ab=3
Use the distributive property to multiply -2 by 3x+2ab.
6ax-6x-4ab=3-6b
Subtract 6b from both sides.
6ax-4ab=3-6b+6x
Add 6x to both sides.
\left(6x-4b\right)a=3-6b+6x
Combine all terms containing a.
\left(6x-4b\right)a=6x-6b+3
The equation is in standard form.
\frac{\left(6x-4b\right)a}{6x-4b}=\frac{6x-6b+3}{6x-4b}
Divide both sides by 6x-4b.
a=\frac{6x-6b+3}{6x-4b}
Dividing by 6x-4b undoes the multiplication by 6x-4b.
a=\frac{3\left(2x-2b+1\right)}{2\left(3x-2b\right)}
Divide 3-6b+6x by 6x-4b.
6ax+6b-2\left(3x+2ab\right)=3
Multiply both sides of the equation by 6, the least common multiple of 3,2.
6ax+6b-6x-4ab=3
Use the distributive property to multiply -2 by 3x+2ab.
6b-6x-4ab=3-6ax
Subtract 6ax from both sides.
6b-4ab=3-6ax+6x
Add 6x to both sides.
\left(6-4a\right)b=3-6ax+6x
Combine all terms containing b.
\left(6-4a\right)b=3+6x-6ax
The equation is in standard form.
\frac{\left(6-4a\right)b}{6-4a}=\frac{3+6x-6ax}{6-4a}
Divide both sides by 6-4a.
b=\frac{3+6x-6ax}{6-4a}
Dividing by 6-4a undoes the multiplication by 6-4a.
b=\frac{3\left(1+2x-2ax\right)}{2\left(3-2a\right)}
Divide 3-6ax+6x by 6-4a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}