Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{dx-bx-bc+ed}{x}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&\left(x=0\text{ and }c\neq e\text{ and }b\neq 0\text{ and }d=\frac{bc}{e}\right)\text{ or }\left(b=d\text{ and }c=e\text{ and }x=0\right)\text{ or }\left(d=0\text{ and }b=0\text{ and }x=0\right)\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{ax-dx-ed}{x+c}\text{, }&x\neq -c\\b\in \mathrm{C}\text{, }&\left(a=-\frac{d\left(e-c\right)}{c}\text{ and }x=-c\text{ and }c\neq 0\right)\text{ or }\left(d=0\text{ and }x=0\text{ and }c=0\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{dx-bx-bc+ed}{x}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&\left(x=0\text{ and }c\neq e\text{ and }b\neq 0\text{ and }d=\frac{bc}{e}\right)\text{ or }\left(b=d\text{ and }c=e\text{ and }x=0\right)\text{ or }\left(d=0\text{ and }b=0\text{ and }x=0\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{ax-dx-ed}{x+c}\text{, }&x\neq -c\\b\in \mathrm{R}\text{, }&\left(a=-\frac{d\left(e-c\right)}{c}\text{ and }x=-c\text{ and }c\neq 0\right)\text{ or }\left(d=0\text{ and }x=0\text{ and }c=0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
ax+bx+bc=d\left(x+e\right)
Use the distributive property to multiply b by x+c.
ax+bx+bc=dx+de
Use the distributive property to multiply d by x+e.
ax+bc=dx+de-bx
Subtract bx from both sides.
ax=dx+de-bx-bc
Subtract bc from both sides.
xa=dx-bx-bc+ed
The equation is in standard form.
\frac{xa}{x}=\frac{dx-bx-bc+ed}{x}
Divide both sides by x.
a=\frac{dx-bx-bc+ed}{x}
Dividing by x undoes the multiplication by x.
ax+bx+bc=d\left(x+e\right)
Use the distributive property to multiply b by x+c.
ax+bx+bc=dx+de
Use the distributive property to multiply d by x+e.
bx+bc=dx+de-ax
Subtract ax from both sides.
\left(x+c\right)b=dx+de-ax
Combine all terms containing b.
\left(x+c\right)b=dx-ax+ed
The equation is in standard form.
\frac{\left(x+c\right)b}{x+c}=\frac{dx-ax+ed}{x+c}
Divide both sides by x+c.
b=\frac{dx-ax+ed}{x+c}
Dividing by x+c undoes the multiplication by x+c.
ax+bx+bc=d\left(x+e\right)
Use the distributive property to multiply b by x+c.
ax+bx+bc=dx+de
Use the distributive property to multiply d by x+e.
ax+bc=dx+de-bx
Subtract bx from both sides.
ax=dx+de-bx-bc
Subtract bc from both sides.
xa=dx-bx-bc+ed
The equation is in standard form.
\frac{xa}{x}=\frac{dx-bx-bc+ed}{x}
Divide both sides by x.
a=\frac{dx-bx-bc+ed}{x}
Dividing by x undoes the multiplication by x.
ax+bx+bc=d\left(x+e\right)
Use the distributive property to multiply b by x+c.
ax+bx+bc=dx+de
Use the distributive property to multiply d by x+e.
bx+bc=dx+de-ax
Subtract ax from both sides.
\left(x+c\right)b=dx+de-ax
Combine all terms containing b.
\left(x+c\right)b=dx-ax+ed
The equation is in standard form.
\frac{\left(x+c\right)b}{x+c}=\frac{dx-ax+ed}{x+c}
Divide both sides by x+c.
b=\frac{dx-ax+ed}{x+c}
Dividing by x+c undoes the multiplication by x+c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}