Solve for a
\left\{\begin{matrix}\\a=q\left(b+1\right)\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&q=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{a}{q}-1\text{, }&q\neq 0\\b\in \mathrm{R}\text{, }&q=0\end{matrix}\right.
Share
Copied to clipboard
aq-bq^{2}=q^{2}
Add q^{2} to both sides. Anything plus zero gives itself.
aq=q^{2}+bq^{2}
Add bq^{2} to both sides.
qa=bq^{2}+q^{2}
The equation is in standard form.
\frac{qa}{q}=\frac{\left(b+1\right)q^{2}}{q}
Divide both sides by q.
a=\frac{\left(b+1\right)q^{2}}{q}
Dividing by q undoes the multiplication by q.
a=bq+q
Divide \left(1+b\right)q^{2} by q.
aq-bq^{2}=q^{2}
Add q^{2} to both sides. Anything plus zero gives itself.
-bq^{2}=q^{2}-aq
Subtract aq from both sides.
\left(-q^{2}\right)b=q^{2}-aq
The equation is in standard form.
\frac{\left(-q^{2}\right)b}{-q^{2}}=\frac{q\left(q-a\right)}{-q^{2}}
Divide both sides by -q^{2}.
b=\frac{q\left(q-a\right)}{-q^{2}}
Dividing by -q^{2} undoes the multiplication by -q^{2}.
b=\frac{a}{q}-1
Divide q\left(q-a\right) by -q^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}