Solve for a
\left\{\begin{matrix}a=\frac{a_{1}}{s+n-ns}\text{, }&s=1\text{ or }n\neq -\frac{s}{1-s}\\a\in \mathrm{R}\text{, }&a_{1}=0\text{ and }n=-\frac{s}{1-s}\text{ and }s\neq 1\end{matrix}\right.
Solve for a_1
a_{1}=a\left(s+n-ns\right)
Share
Copied to clipboard
an=a_{1}+\left(na-a\right)s
Use the distributive property to multiply n-1 by a.
an=a_{1}+nas-as
Use the distributive property to multiply na-a by s.
an-nas=a_{1}-as
Subtract nas from both sides.
an-nas+as=a_{1}
Add as to both sides.
-ans+an+as=a_{1}
Reorder the terms.
\left(-ns+n+s\right)a=a_{1}
Combine all terms containing a.
\left(s+n-ns\right)a=a_{1}
The equation is in standard form.
\frac{\left(s+n-ns\right)a}{s+n-ns}=\frac{a_{1}}{s+n-ns}
Divide both sides by n-sn+s.
a=\frac{a_{1}}{s+n-ns}
Dividing by n-sn+s undoes the multiplication by n-sn+s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}