Solve for a
a=-1+\frac{2}{m}
m\neq 0
Solve for m
m=\frac{2}{a+1}
a\neq -1
Share
Copied to clipboard
ma=2-m
The equation is in standard form.
\frac{ma}{m}=\frac{2-m}{m}
Divide both sides by m.
a=\frac{2-m}{m}
Dividing by m undoes the multiplication by m.
a=-1+\frac{2}{m}
Divide 2-m by m.
am+m=2
Add m to both sides.
\left(a+1\right)m=2
Combine all terms containing m.
\frac{\left(a+1\right)m}{a+1}=\frac{2}{a+1}
Divide both sides by a+1.
m=\frac{2}{a+1}
Dividing by a+1 undoes the multiplication by a+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}