Solve for a
a=-10k+\frac{1}{k}
k\neq 0
Solve for k
k=\frac{\sqrt{a^{2}+40}-a}{20}
k=\frac{-\sqrt{a^{2}+40}-a}{20}
Share
Copied to clipboard
ak=1-10k^{2}
Subtract 10k^{2} from both sides.
ka=1-10k^{2}
The equation is in standard form.
\frac{ka}{k}=\frac{1-10k^{2}}{k}
Divide both sides by k.
a=\frac{1-10k^{2}}{k}
Dividing by k undoes the multiplication by k.
a=-10k+\frac{1}{k}
Divide 1-10k^{2} by k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}