Solve for a
\left\{\begin{matrix}a=-\left(\frac{c}{d}\right)^{2}b\text{, }&d\neq 0\\a\in \mathrm{R}\text{, }&\left(b=0\text{ or }c=0\right)\text{ and }d=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\left(\frac{d}{c}\right)^{2}a\text{, }&c\neq 0\\b\in \mathrm{R}\text{, }&\left(a=0\text{ or }d=0\right)\text{ and }c=0\end{matrix}\right.
Share
Copied to clipboard
ad^{2}=-bc^{2}
Subtract bc^{2} from both sides. Anything subtracted from zero gives its negation.
d^{2}a=-bc^{2}
The equation is in standard form.
\frac{d^{2}a}{d^{2}}=-\frac{bc^{2}}{d^{2}}
Divide both sides by d^{2}.
a=-\frac{bc^{2}}{d^{2}}
Dividing by d^{2} undoes the multiplication by d^{2}.
bc^{2}=-ad^{2}
Subtract ad^{2} from both sides. Anything subtracted from zero gives its negation.
c^{2}b=-ad^{2}
The equation is in standard form.
\frac{c^{2}b}{c^{2}}=-\frac{ad^{2}}{c^{2}}
Divide both sides by c^{2}.
b=-\frac{ad^{2}}{c^{2}}
Dividing by c^{2} undoes the multiplication by c^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}