Solve for A
\left\{\begin{matrix}A=-a+\frac{b}{c}\text{, }&c\neq 0\\A\in \mathrm{R}\text{, }&\left(b=0\text{ and }c=0\right)\text{ or }a=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a=-A+\frac{b}{c}\text{, }&c\neq 0\\a\in \mathrm{R}\text{, }&b=0\text{ and }c=0\end{matrix}\right.
Share
Copied to clipboard
ab=\left(a^{2}+aA\right)c
Use the distributive property to multiply a by a+A.
ab=a^{2}c+aAc
Use the distributive property to multiply a^{2}+aA by c.
a^{2}c+aAc=ab
Swap sides so that all variable terms are on the left hand side.
aAc=ab-a^{2}c
Subtract a^{2}c from both sides.
Aac=ab-ca^{2}
Reorder the terms.
acA=ab-ca^{2}
The equation is in standard form.
\frac{acA}{ac}=\frac{a\left(b-ac\right)}{ac}
Divide both sides by ac.
A=\frac{a\left(b-ac\right)}{ac}
Dividing by ac undoes the multiplication by ac.
A=-a+\frac{b}{c}
Divide a\left(b-ca\right) by ac.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}