a b + c d - a c - b d = a ( b - c
Solve for b
\left\{\begin{matrix}\\b=c\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Solve for a
a\in \mathrm{R}
b=c\text{ or }d=0
Share
Copied to clipboard
ab+cd-ac-bd=ab-ac
Use the distributive property to multiply a by b-c.
ab+cd-ac-bd-ab=-ac
Subtract ab from both sides.
cd-ac-bd=-ac
Combine ab and -ab to get 0.
-ac-bd=-ac-cd
Subtract cd from both sides.
-bd=-ac-cd+ac
Add ac to both sides.
-bd=-cd
Combine -ac and ac to get 0.
bd=cd
Cancel out -1 on both sides.
db=cd
The equation is in standard form.
\frac{db}{d}=\frac{cd}{d}
Divide both sides by d.
b=\frac{cd}{d}
Dividing by d undoes the multiplication by d.
b=c
Divide cd by d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}