Solve for n
n=\frac{\left(11-a_{n}\right)^{2}}{8}
a_{n}\leq 11
Solve for a_n
a_{n}=-2\sqrt{2n}+11
n\geq 0
Share
Copied to clipboard
10-2\sqrt{2n}+1=a_{n}
Swap sides so that all variable terms are on the left hand side.
10-2\sqrt{2n}=a_{n}-1
Subtract 1 from both sides.
-2\sqrt{2n}=a_{n}-1-10
Subtract 10 from both sides.
-2\sqrt{2n}=a_{n}-11
Subtract 10 from -1 to get -11.
\frac{-2\sqrt{2n}}{-2}=\frac{a_{n}-11}{-2}
Divide both sides by -2.
\sqrt{2n}=\frac{a_{n}-11}{-2}
Dividing by -2 undoes the multiplication by -2.
\sqrt{2n}=\frac{11-a_{n}}{2}
Divide a_{n}-11 by -2.
2n=\frac{\left(11-a_{n}\right)^{2}}{4}
Square both sides of the equation.
\frac{2n}{2}=\frac{\left(11-a_{n}\right)^{2}}{2\times 4}
Divide both sides by 2.
n=\frac{\left(11-a_{n}\right)^{2}}{2\times 4}
Dividing by 2 undoes the multiplication by 2.
n=\frac{\left(11-a_{n}\right)^{2}}{8}
Divide \frac{\left(-a_{n}+11\right)^{2}}{4} by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}