Solve for n
n=-\frac{2\left(a_{n}-9\right)}{a_{n}-5}
a_{n}\neq 5
Solve for a_n
a_{n}=\frac{5n+18}{n+2}
n\neq -2
Share
Copied to clipboard
a_{n}\left(n+2\right)=5n+18
Variable n cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by n+2.
a_{n}n+2a_{n}=5n+18
Use the distributive property to multiply a_{n} by n+2.
a_{n}n+2a_{n}-5n=18
Subtract 5n from both sides.
a_{n}n-5n=18-2a_{n}
Subtract 2a_{n} from both sides.
\left(a_{n}-5\right)n=18-2a_{n}
Combine all terms containing n.
\frac{\left(a_{n}-5\right)n}{a_{n}-5}=\frac{18-2a_{n}}{a_{n}-5}
Divide both sides by a_{n}-5.
n=\frac{18-2a_{n}}{a_{n}-5}
Dividing by a_{n}-5 undoes the multiplication by a_{n}-5.
n=\frac{2\left(9-a_{n}\right)}{a_{n}-5}
Divide 18-2a_{n} by a_{n}-5.
n=\frac{2\left(9-a_{n}\right)}{a_{n}-5}\text{, }n\neq -2
Variable n cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}