Solve for n (complex solution)
\left\{\begin{matrix}n=\frac{\sqrt{162100a_{n}^{2}-160a_{n}-19}-400a_{n}+1}{2\left(35a_{n}-1\right)}\text{; }n=\frac{-\sqrt{162100a_{n}^{2}-160a_{n}-19}-400a_{n}+1}{2\left(35a_{n}-1\right)}\text{, }&a_{n}\neq \frac{1}{35}\\n=\frac{38}{73}\text{, }&a_{n}=\frac{1}{35}\end{matrix}\right.
Solve for a_n
a_{n}=\frac{n^{2}+n+5}{5\left(7n^{2}+80n-3\right)}
n\neq \frac{\sqrt{1621}-40}{7}\text{ and }n\neq \frac{-\sqrt{1621}-40}{7}
Solve for n
\left\{\begin{matrix}n=\frac{\sqrt{162100a_{n}^{2}-160a_{n}-19}-400a_{n}+1}{2\left(35a_{n}-1\right)}\text{; }n=\frac{-\sqrt{162100a_{n}^{2}-160a_{n}-19}-400a_{n}+1}{2\left(35a_{n}-1\right)}\text{, }&a_{n}\leq -\frac{\sqrt{30863}}{16210}+\frac{4}{8105}\text{ or }\left(a_{n}\neq \frac{1}{35}\text{ and }a_{n}\geq \frac{\sqrt{30863}}{16210}+\frac{4}{8105}\right)\\n=\frac{38}{73}\text{, }&a_{n}=\frac{1}{35}\end{matrix}\right.
Quiz
Algebra
5 problems similar to:
a _ { n } = \frac { n ^ { 2 } + n + 5 } { 35 n ^ { 2 } + 400 n - 15 }
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}