Solve for a_1
a_{1}=2-3d
Solve for d
d=\frac{2-a_{1}}{3}
Quiz
Linear Equation
5 problems similar to:
a _ { 1 } + 5 d = \frac { 1 } { 2 } ( a _ { 1 } + 7 d ) + 1
Share
Copied to clipboard
a_{1}+5d=\frac{1}{2}a_{1}+\frac{7}{2}d+1
Use the distributive property to multiply \frac{1}{2} by a_{1}+7d.
a_{1}+5d-\frac{1}{2}a_{1}=\frac{7}{2}d+1
Subtract \frac{1}{2}a_{1} from both sides.
\frac{1}{2}a_{1}+5d=\frac{7}{2}d+1
Combine a_{1} and -\frac{1}{2}a_{1} to get \frac{1}{2}a_{1}.
\frac{1}{2}a_{1}=\frac{7}{2}d+1-5d
Subtract 5d from both sides.
\frac{1}{2}a_{1}=-\frac{3}{2}d+1
Combine \frac{7}{2}d and -5d to get -\frac{3}{2}d.
\frac{1}{2}a_{1}=-\frac{3d}{2}+1
The equation is in standard form.
\frac{\frac{1}{2}a_{1}}{\frac{1}{2}}=\frac{-\frac{3d}{2}+1}{\frac{1}{2}}
Multiply both sides by 2.
a_{1}=\frac{-\frac{3d}{2}+1}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
a_{1}=2-3d
Divide -\frac{3d}{2}+1 by \frac{1}{2} by multiplying -\frac{3d}{2}+1 by the reciprocal of \frac{1}{2}.
a_{1}+5d=\frac{1}{2}a_{1}+\frac{7}{2}d+1
Use the distributive property to multiply \frac{1}{2} by a_{1}+7d.
a_{1}+5d-\frac{7}{2}d=\frac{1}{2}a_{1}+1
Subtract \frac{7}{2}d from both sides.
a_{1}+\frac{3}{2}d=\frac{1}{2}a_{1}+1
Combine 5d and -\frac{7}{2}d to get \frac{3}{2}d.
\frac{3}{2}d=\frac{1}{2}a_{1}+1-a_{1}
Subtract a_{1} from both sides.
\frac{3}{2}d=-\frac{1}{2}a_{1}+1
Combine \frac{1}{2}a_{1} and -a_{1} to get -\frac{1}{2}a_{1}.
\frac{3}{2}d=-\frac{a_{1}}{2}+1
The equation is in standard form.
\frac{\frac{3}{2}d}{\frac{3}{2}}=\frac{-\frac{a_{1}}{2}+1}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
d=\frac{-\frac{a_{1}}{2}+1}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
d=\frac{2-a_{1}}{3}
Divide -\frac{a_{1}}{2}+1 by \frac{3}{2} by multiplying -\frac{a_{1}}{2}+1 by the reciprocal of \frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}