Solve for a_8
a_{8}=\frac{76125-15225x}{4}
Solve for x
x=-\frac{4a_{8}}{15225}+5
Graph
Share
Copied to clipboard
\frac{a_{8}\times 4}{3\times 4+3}=\left(5-x\right)\times 1015
Divide a_{8} by \frac{3\times 4+3}{4} by multiplying a_{8} by the reciprocal of \frac{3\times 4+3}{4}.
\frac{a_{8}\times 4}{12+3}=\left(5-x\right)\times 1015
Multiply 3 and 4 to get 12.
\frac{a_{8}\times 4}{15}=\left(5-x\right)\times 1015
Add 12 and 3 to get 15.
\frac{a_{8}\times 4}{15}=5075-1015x
Use the distributive property to multiply 5-x by 1015.
a_{8}\times 4=76125-15225x
Multiply both sides of the equation by 15.
4a_{8}=76125-15225x
The equation is in standard form.
\frac{4a_{8}}{4}=\frac{76125-15225x}{4}
Divide both sides by 4.
a_{8}=\frac{76125-15225x}{4}
Dividing by 4 undoes the multiplication by 4.
\frac{a_{8}\times 4}{3\times 4+3}=\left(5-x\right)\times 1015
Divide a_{8} by \frac{3\times 4+3}{4} by multiplying a_{8} by the reciprocal of \frac{3\times 4+3}{4}.
\frac{a_{8}\times 4}{12+3}=\left(5-x\right)\times 1015
Multiply 3 and 4 to get 12.
\frac{a_{8}\times 4}{15}=\left(5-x\right)\times 1015
Add 12 and 3 to get 15.
\frac{a_{8}\times 4}{15}=5075-1015x
Use the distributive property to multiply 5-x by 1015.
5075-1015x=\frac{a_{8}\times 4}{15}
Swap sides so that all variable terms are on the left hand side.
-1015x=\frac{a_{8}\times 4}{15}-5075
Subtract 5075 from both sides.
-15225x=a_{8}\times 4-76125
Multiply both sides of the equation by 15.
-15225x=4a_{8}-76125
The equation is in standard form.
\frac{-15225x}{-15225}=\frac{4a_{8}-76125}{-15225}
Divide both sides by -15225.
x=\frac{4a_{8}-76125}{-15225}
Dividing by -15225 undoes the multiplication by -15225.
x=-\frac{4a_{8}}{15225}+5
Divide 4a_{8}-76125 by -15225.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}