Solve for a
a = \frac{\sqrt{345} + 1}{2} \approx 9.787087811
a=\frac{1-\sqrt{345}}{2}\approx -8.787087811
Share
Copied to clipboard
-a^{2}+a=-86
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-a^{2}+a-\left(-86\right)=-86-\left(-86\right)
Add 86 to both sides of the equation.
-a^{2}+a-\left(-86\right)=0
Subtracting -86 from itself leaves 0.
-a^{2}+a+86=0
Subtract -86 from 0.
a=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 86}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and 86 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-1±\sqrt{1-4\left(-1\right)\times 86}}{2\left(-1\right)}
Square 1.
a=\frac{-1±\sqrt{1+4\times 86}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-1±\sqrt{1+344}}{2\left(-1\right)}
Multiply 4 times 86.
a=\frac{-1±\sqrt{345}}{2\left(-1\right)}
Add 1 to 344.
a=\frac{-1±\sqrt{345}}{-2}
Multiply 2 times -1.
a=\frac{\sqrt{345}-1}{-2}
Now solve the equation a=\frac{-1±\sqrt{345}}{-2} when ± is plus. Add -1 to \sqrt{345}.
a=\frac{1-\sqrt{345}}{2}
Divide -1+\sqrt{345} by -2.
a=\frac{-\sqrt{345}-1}{-2}
Now solve the equation a=\frac{-1±\sqrt{345}}{-2} when ± is minus. Subtract \sqrt{345} from -1.
a=\frac{\sqrt{345}+1}{2}
Divide -1-\sqrt{345} by -2.
a=\frac{1-\sqrt{345}}{2} a=\frac{\sqrt{345}+1}{2}
The equation is now solved.
-a^{2}+a=-86
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-a^{2}+a}{-1}=-\frac{86}{-1}
Divide both sides by -1.
a^{2}+\frac{1}{-1}a=-\frac{86}{-1}
Dividing by -1 undoes the multiplication by -1.
a^{2}-a=-\frac{86}{-1}
Divide 1 by -1.
a^{2}-a=86
Divide -86 by -1.
a^{2}-a+\left(-\frac{1}{2}\right)^{2}=86+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-a+\frac{1}{4}=86+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-a+\frac{1}{4}=\frac{345}{4}
Add 86 to \frac{1}{4}.
\left(a-\frac{1}{2}\right)^{2}=\frac{345}{4}
Factor a^{2}-a+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{1}{2}\right)^{2}}=\sqrt{\frac{345}{4}}
Take the square root of both sides of the equation.
a-\frac{1}{2}=\frac{\sqrt{345}}{2} a-\frac{1}{2}=-\frac{\sqrt{345}}{2}
Simplify.
a=\frac{\sqrt{345}+1}{2} a=\frac{1-\sqrt{345}}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}