Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

5a^{2}+a-27=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-1±\sqrt{1^{2}-4\times 5\left(-27\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-1±\sqrt{1-4\times 5\left(-27\right)}}{2\times 5}
Square 1.
a=\frac{-1±\sqrt{1-20\left(-27\right)}}{2\times 5}
Multiply -4 times 5.
a=\frac{-1±\sqrt{1+540}}{2\times 5}
Multiply -20 times -27.
a=\frac{-1±\sqrt{541}}{2\times 5}
Add 1 to 540.
a=\frac{-1±\sqrt{541}}{10}
Multiply 2 times 5.
a=\frac{\sqrt{541}-1}{10}
Now solve the equation a=\frac{-1±\sqrt{541}}{10} when ± is plus. Add -1 to \sqrt{541}.
a=\frac{-\sqrt{541}-1}{10}
Now solve the equation a=\frac{-1±\sqrt{541}}{10} when ± is minus. Subtract \sqrt{541} from -1.
5a^{2}+a-27=5\left(a-\frac{\sqrt{541}-1}{10}\right)\left(a-\frac{-\sqrt{541}-1}{10}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1+\sqrt{541}}{10} for x_{1} and \frac{-1-\sqrt{541}}{10} for x_{2}.