Evaluate
\frac{5a}{6}-\frac{7b}{3}
Expand
\frac{5a}{6}-\frac{7b}{3}
Share
Copied to clipboard
a-\frac{2\left(a+2b\right)}{3}+\frac{a-2b}{2}
Express 2\times \frac{a+2b}{3} as a single fraction.
a-\frac{2a+4b}{3}+\frac{a-2b}{2}
Use the distributive property to multiply 2 by a+2b.
\frac{3a}{3}-\frac{2a+4b}{3}+\frac{a-2b}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{3}{3}.
\frac{3a-\left(2a+4b\right)}{3}+\frac{a-2b}{2}
Since \frac{3a}{3} and \frac{2a+4b}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{3a-2a-4b}{3}+\frac{a-2b}{2}
Do the multiplications in 3a-\left(2a+4b\right).
\frac{a-4b}{3}+\frac{a-2b}{2}
Combine like terms in 3a-2a-4b.
\frac{2\left(a-4b\right)}{6}+\frac{3\left(a-2b\right)}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{a-4b}{3} times \frac{2}{2}. Multiply \frac{a-2b}{2} times \frac{3}{3}.
\frac{2\left(a-4b\right)+3\left(a-2b\right)}{6}
Since \frac{2\left(a-4b\right)}{6} and \frac{3\left(a-2b\right)}{6} have the same denominator, add them by adding their numerators.
\frac{2a-8b+3a-6b}{6}
Do the multiplications in 2\left(a-4b\right)+3\left(a-2b\right).
\frac{5a-14b}{6}
Combine like terms in 2a-8b+3a-6b.
a-\frac{2\left(a+2b\right)}{3}+\frac{a-2b}{2}
Express 2\times \frac{a+2b}{3} as a single fraction.
a-\frac{2a+4b}{3}+\frac{a-2b}{2}
Use the distributive property to multiply 2 by a+2b.
\frac{3a}{3}-\frac{2a+4b}{3}+\frac{a-2b}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{3}{3}.
\frac{3a-\left(2a+4b\right)}{3}+\frac{a-2b}{2}
Since \frac{3a}{3} and \frac{2a+4b}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{3a-2a-4b}{3}+\frac{a-2b}{2}
Do the multiplications in 3a-\left(2a+4b\right).
\frac{a-4b}{3}+\frac{a-2b}{2}
Combine like terms in 3a-2a-4b.
\frac{2\left(a-4b\right)}{6}+\frac{3\left(a-2b\right)}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{a-4b}{3} times \frac{2}{2}. Multiply \frac{a-2b}{2} times \frac{3}{3}.
\frac{2\left(a-4b\right)+3\left(a-2b\right)}{6}
Since \frac{2\left(a-4b\right)}{6} and \frac{3\left(a-2b\right)}{6} have the same denominator, add them by adding their numerators.
\frac{2a-8b+3a-6b}{6}
Do the multiplications in 2\left(a-4b\right)+3\left(a-2b\right).
\frac{5a-14b}{6}
Combine like terms in 2a-8b+3a-6b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}