Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a-\frac{2\left(a+2b\right)}{3}+\frac{a-2b}{2}
Express 2\times \frac{a+2b}{3} as a single fraction.
a-\frac{2a+4b}{3}+\frac{a-2b}{2}
Use the distributive property to multiply 2 by a+2b.
\frac{3a}{3}-\frac{2a+4b}{3}+\frac{a-2b}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{3}{3}.
\frac{3a-\left(2a+4b\right)}{3}+\frac{a-2b}{2}
Since \frac{3a}{3} and \frac{2a+4b}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{3a-2a-4b}{3}+\frac{a-2b}{2}
Do the multiplications in 3a-\left(2a+4b\right).
\frac{a-4b}{3}+\frac{a-2b}{2}
Combine like terms in 3a-2a-4b.
\frac{2\left(a-4b\right)}{6}+\frac{3\left(a-2b\right)}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{a-4b}{3} times \frac{2}{2}. Multiply \frac{a-2b}{2} times \frac{3}{3}.
\frac{2\left(a-4b\right)+3\left(a-2b\right)}{6}
Since \frac{2\left(a-4b\right)}{6} and \frac{3\left(a-2b\right)}{6} have the same denominator, add them by adding their numerators.
\frac{2a-8b+3a-6b}{6}
Do the multiplications in 2\left(a-4b\right)+3\left(a-2b\right).
\frac{5a-14b}{6}
Combine like terms in 2a-8b+3a-6b.
a-\frac{2\left(a+2b\right)}{3}+\frac{a-2b}{2}
Express 2\times \frac{a+2b}{3} as a single fraction.
a-\frac{2a+4b}{3}+\frac{a-2b}{2}
Use the distributive property to multiply 2 by a+2b.
\frac{3a}{3}-\frac{2a+4b}{3}+\frac{a-2b}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{3}{3}.
\frac{3a-\left(2a+4b\right)}{3}+\frac{a-2b}{2}
Since \frac{3a}{3} and \frac{2a+4b}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{3a-2a-4b}{3}+\frac{a-2b}{2}
Do the multiplications in 3a-\left(2a+4b\right).
\frac{a-4b}{3}+\frac{a-2b}{2}
Combine like terms in 3a-2a-4b.
\frac{2\left(a-4b\right)}{6}+\frac{3\left(a-2b\right)}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{a-4b}{3} times \frac{2}{2}. Multiply \frac{a-2b}{2} times \frac{3}{3}.
\frac{2\left(a-4b\right)+3\left(a-2b\right)}{6}
Since \frac{2\left(a-4b\right)}{6} and \frac{3\left(a-2b\right)}{6} have the same denominator, add them by adding their numerators.
\frac{2a-8b+3a-6b}{6}
Do the multiplications in 2\left(a-4b\right)+3\left(a-2b\right).
\frac{5a-14b}{6}
Combine like terms in 2a-8b+3a-6b.