Solve for a
a = \frac{\sqrt{17} + 9}{2} \approx 6.561552813
Share
Copied to clipboard
-\sqrt{a}=4-a
Subtract a from both sides of the equation.
\left(-\sqrt{a}\right)^{2}=\left(4-a\right)^{2}
Square both sides of the equation.
\left(-1\right)^{2}\left(\sqrt{a}\right)^{2}=\left(4-a\right)^{2}
Expand \left(-\sqrt{a}\right)^{2}.
1\left(\sqrt{a}\right)^{2}=\left(4-a\right)^{2}
Calculate -1 to the power of 2 and get 1.
1a=\left(4-a\right)^{2}
Calculate \sqrt{a} to the power of 2 and get a.
1a=16-8a+a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-a\right)^{2}.
a=a^{2}-8a+16
Reorder the terms.
a-a^{2}=-8a+16
Subtract a^{2} from both sides.
a-a^{2}+8a=16
Add 8a to both sides.
9a-a^{2}=16
Combine a and 8a to get 9a.
9a-a^{2}-16=0
Subtract 16 from both sides.
-a^{2}+9a-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 9 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-9±\sqrt{81-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
Square 9.
a=\frac{-9±\sqrt{81+4\left(-16\right)}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-9±\sqrt{81-64}}{2\left(-1\right)}
Multiply 4 times -16.
a=\frac{-9±\sqrt{17}}{2\left(-1\right)}
Add 81 to -64.
a=\frac{-9±\sqrt{17}}{-2}
Multiply 2 times -1.
a=\frac{\sqrt{17}-9}{-2}
Now solve the equation a=\frac{-9±\sqrt{17}}{-2} when ± is plus. Add -9 to \sqrt{17}.
a=\frac{9-\sqrt{17}}{2}
Divide -9+\sqrt{17} by -2.
a=\frac{-\sqrt{17}-9}{-2}
Now solve the equation a=\frac{-9±\sqrt{17}}{-2} when ± is minus. Subtract \sqrt{17} from -9.
a=\frac{\sqrt{17}+9}{2}
Divide -9-\sqrt{17} by -2.
a=\frac{9-\sqrt{17}}{2} a=\frac{\sqrt{17}+9}{2}
The equation is now solved.
\frac{9-\sqrt{17}}{2}-\sqrt{\frac{9-\sqrt{17}}{2}}=4
Substitute \frac{9-\sqrt{17}}{2} for a in the equation a-\sqrt{a}=4.
5-17^{\frac{1}{2}}=4
Simplify. The value a=\frac{9-\sqrt{17}}{2} does not satisfy the equation.
\frac{\sqrt{17}+9}{2}-\sqrt{\frac{\sqrt{17}+9}{2}}=4
Substitute \frac{\sqrt{17}+9}{2} for a in the equation a-\sqrt{a}=4.
4=4
Simplify. The value a=\frac{\sqrt{17}+9}{2} satisfies the equation.
a=\frac{\sqrt{17}+9}{2}
Equation -\sqrt{a}=4-a has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}