Evaluate
11-5a
Expand
11-5a
Share
Copied to clipboard
a-\left(2a^{2}-4a+a-2+\left(a-3\right)\left(a+1\right)-\left(3a-2\right)\left(a-3\right)\right)
Apply the distributive property by multiplying each term of 2a+1 by each term of a-2.
a-\left(2a^{2}-3a-2+\left(a-3\right)\left(a+1\right)-\left(3a-2\right)\left(a-3\right)\right)
Combine -4a and a to get -3a.
a-\left(2a^{2}-3a-2+a^{2}+a-3a-3-\left(3a-2\right)\left(a-3\right)\right)
Apply the distributive property by multiplying each term of a-3 by each term of a+1.
a-\left(2a^{2}-3a-2+a^{2}-2a-3-\left(3a-2\right)\left(a-3\right)\right)
Combine a and -3a to get -2a.
a-\left(3a^{2}-3a-2-2a-3-\left(3a-2\right)\left(a-3\right)\right)
Combine 2a^{2} and a^{2} to get 3a^{2}.
a-\left(3a^{2}-5a-2-3-\left(3a-2\right)\left(a-3\right)\right)
Combine -3a and -2a to get -5a.
a-\left(3a^{2}-5a-5-\left(3a-2\right)\left(a-3\right)\right)
Subtract 3 from -2 to get -5.
a-\left(3a^{2}-5a-5-\left(3a^{2}-9a-2a+6\right)\right)
Apply the distributive property by multiplying each term of 3a-2 by each term of a-3.
a-\left(3a^{2}-5a-5-\left(3a^{2}-11a+6\right)\right)
Combine -9a and -2a to get -11a.
a-\left(3a^{2}-5a-5-3a^{2}-\left(-11a\right)-6\right)
To find the opposite of 3a^{2}-11a+6, find the opposite of each term.
a-\left(3a^{2}-5a-5-3a^{2}+11a-6\right)
The opposite of -11a is 11a.
a-\left(-5a-5+11a-6\right)
Combine 3a^{2} and -3a^{2} to get 0.
a-\left(6a-5-6\right)
Combine -5a and 11a to get 6a.
a-\left(6a-11\right)
Subtract 6 from -5 to get -11.
a-6a-\left(-11\right)
To find the opposite of 6a-11, find the opposite of each term.
a-6a+11
The opposite of -11 is 11.
-5a+11
Combine a and -6a to get -5a.
a-\left(2a^{2}-4a+a-2+\left(a-3\right)\left(a+1\right)-\left(3a-2\right)\left(a-3\right)\right)
Apply the distributive property by multiplying each term of 2a+1 by each term of a-2.
a-\left(2a^{2}-3a-2+\left(a-3\right)\left(a+1\right)-\left(3a-2\right)\left(a-3\right)\right)
Combine -4a and a to get -3a.
a-\left(2a^{2}-3a-2+a^{2}+a-3a-3-\left(3a-2\right)\left(a-3\right)\right)
Apply the distributive property by multiplying each term of a-3 by each term of a+1.
a-\left(2a^{2}-3a-2+a^{2}-2a-3-\left(3a-2\right)\left(a-3\right)\right)
Combine a and -3a to get -2a.
a-\left(3a^{2}-3a-2-2a-3-\left(3a-2\right)\left(a-3\right)\right)
Combine 2a^{2} and a^{2} to get 3a^{2}.
a-\left(3a^{2}-5a-2-3-\left(3a-2\right)\left(a-3\right)\right)
Combine -3a and -2a to get -5a.
a-\left(3a^{2}-5a-5-\left(3a-2\right)\left(a-3\right)\right)
Subtract 3 from -2 to get -5.
a-\left(3a^{2}-5a-5-\left(3a^{2}-9a-2a+6\right)\right)
Apply the distributive property by multiplying each term of 3a-2 by each term of a-3.
a-\left(3a^{2}-5a-5-\left(3a^{2}-11a+6\right)\right)
Combine -9a and -2a to get -11a.
a-\left(3a^{2}-5a-5-3a^{2}-\left(-11a\right)-6\right)
To find the opposite of 3a^{2}-11a+6, find the opposite of each term.
a-\left(3a^{2}-5a-5-3a^{2}+11a-6\right)
The opposite of -11a is 11a.
a-\left(-5a-5+11a-6\right)
Combine 3a^{2} and -3a^{2} to get 0.
a-\left(6a-5-6\right)
Combine -5a and 11a to get 6a.
a-\left(6a-11\right)
Subtract 6 from -5 to get -11.
a-6a-\left(-11\right)
To find the opposite of 6a-11, find the opposite of each term.
a-6a+11
The opposite of -11 is 11.
-5a+11
Combine a and -6a to get -5a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}