Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for k (complex solution)
Tick mark Image
Solve for k
Tick mark Image
Graph

Similar Problems from Web Search

Share

a\left(x-\left(9k^{2}+36k+36\right)\right)+k+2=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3k+6\right)^{2}.
a\left(x-9k^{2}-36k-36\right)+k+2=0
To find the opposite of 9k^{2}+36k+36, find the opposite of each term.
ax-9ak^{2}-36ak-36a+k+2=0
Use the distributive property to multiply a by x-9k^{2}-36k-36.
ax-9ak^{2}-36ak-36a+2=-k
Subtract k from both sides. Anything subtracted from zero gives its negation.
ax-9ak^{2}-36ak-36a=-k-2
Subtract 2 from both sides.
\left(x-9k^{2}-36k-36\right)a=-k-2
Combine all terms containing a.
\frac{\left(x-9k^{2}-36k-36\right)a}{x-9k^{2}-36k-36}=\frac{-k-2}{x-9k^{2}-36k-36}
Divide both sides by x-9k^{2}-36k-36.
a=\frac{-k-2}{x-9k^{2}-36k-36}
Dividing by x-9k^{2}-36k-36 undoes the multiplication by x-9k^{2}-36k-36.
a=-\frac{k+2}{x-9k^{2}-36k-36}
Divide -2-k by x-9k^{2}-36k-36.
a\left(x-\left(9k^{2}+36k+36\right)\right)+k+2=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3k+6\right)^{2}.
a\left(x-9k^{2}-36k-36\right)+k+2=0
To find the opposite of 9k^{2}+36k+36, find the opposite of each term.
ax-9ak^{2}-36ak-36a+k+2=0
Use the distributive property to multiply a by x-9k^{2}-36k-36.
ax-9ak^{2}-36ak-36a+2=-k
Subtract k from both sides. Anything subtracted from zero gives its negation.
ax-9ak^{2}-36ak-36a=-k-2
Subtract 2 from both sides.
\left(x-9k^{2}-36k-36\right)a=-k-2
Combine all terms containing a.
\frac{\left(x-9k^{2}-36k-36\right)a}{x-9k^{2}-36k-36}=\frac{-k-2}{x-9k^{2}-36k-36}
Divide both sides by x-9k^{2}-36k-36.
a=\frac{-k-2}{x-9k^{2}-36k-36}
Dividing by x-9k^{2}-36k-36 undoes the multiplication by x-9k^{2}-36k-36.
a=-\frac{k+2}{x-9k^{2}-36k-36}
Divide -k-2 by x-9k^{2}-36k-36.