Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{k+2}{x-9k^{2}-36k-36}\text{, }&x\neq 9\left(k+2\right)^{2}\\a\in \mathrm{C}\text{, }&k=-2\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{k+2}{x-9k^{2}-36k-36}\text{, }&x\neq 9\left(k+2\right)^{2}\\a\in \mathrm{R}\text{, }&k=-2\text{ and }x=0\end{matrix}\right.
Solve for k (complex solution)
\left\{\begin{matrix}k=-\frac{\sqrt{36xa^{2}+1}+36a-1}{18a}\text{; }k=-\frac{-\sqrt{36xa^{2}+1}+36a-1}{18a}\text{, }&a\neq 0\\k=-2\text{, }&a=0\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=-\frac{\sqrt{36xa^{2}+1}+36a-1}{18a}\text{; }k=-\frac{-\sqrt{36xa^{2}+1}+36a-1}{18a}\text{, }&a\neq 0\text{ and }x\geq -\frac{1}{36a^{2}}\\k=-2\text{, }&a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
a\left(x-\left(9k^{2}+36k+36\right)\right)+k+2=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3k+6\right)^{2}.
a\left(x-9k^{2}-36k-36\right)+k+2=0
To find the opposite of 9k^{2}+36k+36, find the opposite of each term.
ax-9ak^{2}-36ak-36a+k+2=0
Use the distributive property to multiply a by x-9k^{2}-36k-36.
ax-9ak^{2}-36ak-36a+2=-k
Subtract k from both sides. Anything subtracted from zero gives its negation.
ax-9ak^{2}-36ak-36a=-k-2
Subtract 2 from both sides.
\left(x-9k^{2}-36k-36\right)a=-k-2
Combine all terms containing a.
\frac{\left(x-9k^{2}-36k-36\right)a}{x-9k^{2}-36k-36}=\frac{-k-2}{x-9k^{2}-36k-36}
Divide both sides by x-9k^{2}-36k-36.
a=\frac{-k-2}{x-9k^{2}-36k-36}
Dividing by x-9k^{2}-36k-36 undoes the multiplication by x-9k^{2}-36k-36.
a=-\frac{k+2}{x-9k^{2}-36k-36}
Divide -2-k by x-9k^{2}-36k-36.
a\left(x-\left(9k^{2}+36k+36\right)\right)+k+2=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3k+6\right)^{2}.
a\left(x-9k^{2}-36k-36\right)+k+2=0
To find the opposite of 9k^{2}+36k+36, find the opposite of each term.
ax-9ak^{2}-36ak-36a+k+2=0
Use the distributive property to multiply a by x-9k^{2}-36k-36.
ax-9ak^{2}-36ak-36a+2=-k
Subtract k from both sides. Anything subtracted from zero gives its negation.
ax-9ak^{2}-36ak-36a=-k-2
Subtract 2 from both sides.
\left(x-9k^{2}-36k-36\right)a=-k-2
Combine all terms containing a.
\frac{\left(x-9k^{2}-36k-36\right)a}{x-9k^{2}-36k-36}=\frac{-k-2}{x-9k^{2}-36k-36}
Divide both sides by x-9k^{2}-36k-36.
a=\frac{-k-2}{x-9k^{2}-36k-36}
Dividing by x-9k^{2}-36k-36 undoes the multiplication by x-9k^{2}-36k-36.
a=-\frac{k+2}{x-9k^{2}-36k-36}
Divide -k-2 by x-9k^{2}-36k-36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}