Solve for a
a=\frac{x+1}{x-1}
x\neq 1
Solve for x
x=\frac{a+1}{a-1}
a\neq 1
Graph
Share
Copied to clipboard
ax+a^{2}-x=a\left(a+1\right)+1
Use the distributive property to multiply a by x+a.
ax+a^{2}-x=a^{2}+a+1
Use the distributive property to multiply a by a+1.
ax+a^{2}-x-a^{2}=a+1
Subtract a^{2} from both sides.
ax-x=a+1
Combine a^{2} and -a^{2} to get 0.
ax-x-a=1
Subtract a from both sides.
ax-a=1+x
Add x to both sides.
\left(x-1\right)a=1+x
Combine all terms containing a.
\left(x-1\right)a=x+1
The equation is in standard form.
\frac{\left(x-1\right)a}{x-1}=\frac{x+1}{x-1}
Divide both sides by x-1.
a=\frac{x+1}{x-1}
Dividing by x-1 undoes the multiplication by x-1.
ax+a^{2}-x=a\left(a+1\right)+1
Use the distributive property to multiply a by x+a.
ax+a^{2}-x=a^{2}+a+1
Use the distributive property to multiply a by a+1.
ax-x=a^{2}+a+1-a^{2}
Subtract a^{2} from both sides.
ax-x=a+1
Combine a^{2} and -a^{2} to get 0.
\left(a-1\right)x=a+1
Combine all terms containing x.
\frac{\left(a-1\right)x}{a-1}=\frac{a+1}{a-1}
Divide both sides by -1+a.
x=\frac{a+1}{a-1}
Dividing by -1+a undoes the multiplication by -1+a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}