Solve for a
\left\{\begin{matrix}a=-\frac{dp-bp-dq+br}{q-r}\text{, }&q\neq r\\a\in \mathrm{R}\text{, }&\left(q=p\text{ and }r=p\right)\text{ or }\left(q=r\text{ and }b=d\right)\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{dp+aq-dq-ar}{r-p}\text{, }&r\neq p\\b\in \mathrm{R}\text{, }&\left(a=d\text{ or }q=p\right)\text{ and }r=p\end{matrix}\right.
Share
Copied to clipboard
aq-ar+b\left(r-p\right)+d\left(p-q\right)=0
Use the distributive property to multiply a by q-r.
aq-ar+br-bp+d\left(p-q\right)=0
Use the distributive property to multiply b by r-p.
aq-ar+br-bp+dp-dq=0
Use the distributive property to multiply d by p-q.
aq-ar-bp+dp-dq=-br
Subtract br from both sides. Anything subtracted from zero gives its negation.
aq-ar+dp-dq=-br+bp
Add bp to both sides.
aq-ar-dq=-br+bp-dp
Subtract dp from both sides.
aq-ar=-br+bp-dp+dq
Add dq to both sides.
aq-ar=bp-dp+dq-br
Reorder the terms.
\left(q-r\right)a=bp-dp+dq-br
Combine all terms containing a.
\frac{\left(q-r\right)a}{q-r}=\frac{bp-dp+dq-br}{q-r}
Divide both sides by q-r.
a=\frac{bp-dp+dq-br}{q-r}
Dividing by q-r undoes the multiplication by q-r.
aq-ar+b\left(r-p\right)+d\left(p-q\right)=0
Use the distributive property to multiply a by q-r.
aq-ar+br-bp+d\left(p-q\right)=0
Use the distributive property to multiply b by r-p.
aq-ar+br-bp+dp-dq=0
Use the distributive property to multiply d by p-q.
-ar+br-bp+dp-dq=-aq
Subtract aq from both sides. Anything subtracted from zero gives its negation.
br-bp+dp-dq=-aq+ar
Add ar to both sides.
br-bp-dq=-aq+ar-dp
Subtract dp from both sides.
br-bp=-aq+ar-dp+dq
Add dq to both sides.
-bp+br=-dp+dq-aq+ar
Reorder the terms.
\left(-p+r\right)b=-dp+dq-aq+ar
Combine all terms containing b.
\left(r-p\right)b=ar-aq+dq-dp
The equation is in standard form.
\frac{\left(r-p\right)b}{r-p}=\frac{ar-aq+dq-dp}{r-p}
Divide both sides by r-p.
b=\frac{ar-aq+dq-dp}{r-p}
Dividing by r-p undoes the multiplication by r-p.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}