Evaluate
\left(a+4\right)\left(a+5\right)
Expand
a^{2}+9a+20
Share
Copied to clipboard
\frac{a\left(a+4\right)}{a^{2}-5a}\left(a+5\right)\left(a-5\right)
Express a\times \frac{a+4}{a^{2}-5a} as a single fraction.
\left(\frac{a\left(a+4\right)}{a^{2}-5a}a+5\times \frac{a\left(a+4\right)}{a^{2}-5a}\right)\left(a-5\right)
Use the distributive property to multiply \frac{a\left(a+4\right)}{a^{2}-5a} by a+5.
\left(\frac{a\left(a+4\right)}{a\left(a-5\right)}a+5\times \frac{a\left(a+4\right)}{a^{2}-5a}\right)\left(a-5\right)
Factor the expressions that are not already factored in \frac{a\left(a+4\right)}{a^{2}-5a}.
\left(\frac{a+4}{a-5}a+5\times \frac{a\left(a+4\right)}{a^{2}-5a}\right)\left(a-5\right)
Cancel out a in both numerator and denominator.
\left(\frac{\left(a+4\right)a}{a-5}+5\times \frac{a\left(a+4\right)}{a^{2}-5a}\right)\left(a-5\right)
Express \frac{a+4}{a-5}a as a single fraction.
\left(\frac{\left(a+4\right)a}{a-5}+5\times \frac{a\left(a+4\right)}{a\left(a-5\right)}\right)\left(a-5\right)
Factor the expressions that are not already factored in \frac{a\left(a+4\right)}{a^{2}-5a}.
\left(\frac{\left(a+4\right)a}{a-5}+5\times \frac{a+4}{a-5}\right)\left(a-5\right)
Cancel out a in both numerator and denominator.
\left(\frac{\left(a+4\right)a}{a-5}+\frac{5\left(a+4\right)}{a-5}\right)\left(a-5\right)
Express 5\times \frac{a+4}{a-5} as a single fraction.
\frac{\left(a+4\right)a+5\left(a+4\right)}{a-5}\left(a-5\right)
Since \frac{\left(a+4\right)a}{a-5} and \frac{5\left(a+4\right)}{a-5} have the same denominator, add them by adding their numerators.
\frac{a^{2}+4a+5a+20}{a-5}\left(a-5\right)
Do the multiplications in \left(a+4\right)a+5\left(a+4\right).
\frac{a^{2}+9a+20}{a-5}\left(a-5\right)
Combine like terms in a^{2}+4a+5a+20.
a^{2}+9a+20
Cancel out a-5 and a-5.
\frac{a\left(a+4\right)}{a^{2}-5a}\left(a+5\right)\left(a-5\right)
Express a\times \frac{a+4}{a^{2}-5a} as a single fraction.
\left(\frac{a\left(a+4\right)}{a^{2}-5a}a+5\times \frac{a\left(a+4\right)}{a^{2}-5a}\right)\left(a-5\right)
Use the distributive property to multiply \frac{a\left(a+4\right)}{a^{2}-5a} by a+5.
\left(\frac{a\left(a+4\right)}{a\left(a-5\right)}a+5\times \frac{a\left(a+4\right)}{a^{2}-5a}\right)\left(a-5\right)
Factor the expressions that are not already factored in \frac{a\left(a+4\right)}{a^{2}-5a}.
\left(\frac{a+4}{a-5}a+5\times \frac{a\left(a+4\right)}{a^{2}-5a}\right)\left(a-5\right)
Cancel out a in both numerator and denominator.
\left(\frac{\left(a+4\right)a}{a-5}+5\times \frac{a\left(a+4\right)}{a^{2}-5a}\right)\left(a-5\right)
Express \frac{a+4}{a-5}a as a single fraction.
\left(\frac{\left(a+4\right)a}{a-5}+5\times \frac{a\left(a+4\right)}{a\left(a-5\right)}\right)\left(a-5\right)
Factor the expressions that are not already factored in \frac{a\left(a+4\right)}{a^{2}-5a}.
\left(\frac{\left(a+4\right)a}{a-5}+5\times \frac{a+4}{a-5}\right)\left(a-5\right)
Cancel out a in both numerator and denominator.
\left(\frac{\left(a+4\right)a}{a-5}+\frac{5\left(a+4\right)}{a-5}\right)\left(a-5\right)
Express 5\times \frac{a+4}{a-5} as a single fraction.
\frac{\left(a+4\right)a+5\left(a+4\right)}{a-5}\left(a-5\right)
Since \frac{\left(a+4\right)a}{a-5} and \frac{5\left(a+4\right)}{a-5} have the same denominator, add them by adding their numerators.
\frac{a^{2}+4a+5a+20}{a-5}\left(a-5\right)
Do the multiplications in \left(a+4\right)a+5\left(a+4\right).
\frac{a^{2}+9a+20}{a-5}\left(a-5\right)
Combine like terms in a^{2}+4a+5a+20.
a^{2}+9a+20
Cancel out a-5 and a-5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}