Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a\left(a+4\right)}{a^{2}-5a}\left(a+5\right)\left(a-5\right)
Express a\times \frac{a+4}{a^{2}-5a} as a single fraction.
\left(\frac{a\left(a+4\right)}{a^{2}-5a}a+5\times \frac{a\left(a+4\right)}{a^{2}-5a}\right)\left(a-5\right)
Use the distributive property to multiply \frac{a\left(a+4\right)}{a^{2}-5a} by a+5.
\left(\frac{a\left(a+4\right)}{a\left(a-5\right)}a+5\times \frac{a\left(a+4\right)}{a^{2}-5a}\right)\left(a-5\right)
Factor the expressions that are not already factored in \frac{a\left(a+4\right)}{a^{2}-5a}.
\left(\frac{a+4}{a-5}a+5\times \frac{a\left(a+4\right)}{a^{2}-5a}\right)\left(a-5\right)
Cancel out a in both numerator and denominator.
\left(\frac{\left(a+4\right)a}{a-5}+5\times \frac{a\left(a+4\right)}{a^{2}-5a}\right)\left(a-5\right)
Express \frac{a+4}{a-5}a as a single fraction.
\left(\frac{\left(a+4\right)a}{a-5}+5\times \frac{a\left(a+4\right)}{a\left(a-5\right)}\right)\left(a-5\right)
Factor the expressions that are not already factored in \frac{a\left(a+4\right)}{a^{2}-5a}.
\left(\frac{\left(a+4\right)a}{a-5}+5\times \frac{a+4}{a-5}\right)\left(a-5\right)
Cancel out a in both numerator and denominator.
\left(\frac{\left(a+4\right)a}{a-5}+\frac{5\left(a+4\right)}{a-5}\right)\left(a-5\right)
Express 5\times \frac{a+4}{a-5} as a single fraction.
\frac{\left(a+4\right)a+5\left(a+4\right)}{a-5}\left(a-5\right)
Since \frac{\left(a+4\right)a}{a-5} and \frac{5\left(a+4\right)}{a-5} have the same denominator, add them by adding their numerators.
\frac{a^{2}+4a+5a+20}{a-5}\left(a-5\right)
Do the multiplications in \left(a+4\right)a+5\left(a+4\right).
\frac{a^{2}+9a+20}{a-5}\left(a-5\right)
Combine like terms in a^{2}+4a+5a+20.
a^{2}+9a+20
Cancel out a-5 and a-5.
\frac{a\left(a+4\right)}{a^{2}-5a}\left(a+5\right)\left(a-5\right)
Express a\times \frac{a+4}{a^{2}-5a} as a single fraction.
\left(\frac{a\left(a+4\right)}{a^{2}-5a}a+5\times \frac{a\left(a+4\right)}{a^{2}-5a}\right)\left(a-5\right)
Use the distributive property to multiply \frac{a\left(a+4\right)}{a^{2}-5a} by a+5.
\left(\frac{a\left(a+4\right)}{a\left(a-5\right)}a+5\times \frac{a\left(a+4\right)}{a^{2}-5a}\right)\left(a-5\right)
Factor the expressions that are not already factored in \frac{a\left(a+4\right)}{a^{2}-5a}.
\left(\frac{a+4}{a-5}a+5\times \frac{a\left(a+4\right)}{a^{2}-5a}\right)\left(a-5\right)
Cancel out a in both numerator and denominator.
\left(\frac{\left(a+4\right)a}{a-5}+5\times \frac{a\left(a+4\right)}{a^{2}-5a}\right)\left(a-5\right)
Express \frac{a+4}{a-5}a as a single fraction.
\left(\frac{\left(a+4\right)a}{a-5}+5\times \frac{a\left(a+4\right)}{a\left(a-5\right)}\right)\left(a-5\right)
Factor the expressions that are not already factored in \frac{a\left(a+4\right)}{a^{2}-5a}.
\left(\frac{\left(a+4\right)a}{a-5}+5\times \frac{a+4}{a-5}\right)\left(a-5\right)
Cancel out a in both numerator and denominator.
\left(\frac{\left(a+4\right)a}{a-5}+\frac{5\left(a+4\right)}{a-5}\right)\left(a-5\right)
Express 5\times \frac{a+4}{a-5} as a single fraction.
\frac{\left(a+4\right)a+5\left(a+4\right)}{a-5}\left(a-5\right)
Since \frac{\left(a+4\right)a}{a-5} and \frac{5\left(a+4\right)}{a-5} have the same denominator, add them by adding their numerators.
\frac{a^{2}+4a+5a+20}{a-5}\left(a-5\right)
Do the multiplications in \left(a+4\right)a+5\left(a+4\right).
\frac{a^{2}+9a+20}{a-5}\left(a-5\right)
Combine like terms in a^{2}+4a+5a+20.
a^{2}+9a+20
Cancel out a-5 and a-5.