Solve for a
a=-\frac{b}{9}-\frac{c}{81}-\frac{2}{81}
Solve for b
b=-\frac{c}{9}-9a-\frac{2}{9}
Share
Copied to clipboard
a\times 81+b\times 9+c=-2
Calculate 9 to the power of 2 and get 81.
a\times 81+c=-2-b\times 9
Subtract b\times 9 from both sides.
a\times 81=-2-b\times 9-c
Subtract c from both sides.
a\times 81=-2-9b-c
Multiply -1 and 9 to get -9.
81a=-9b-c-2
The equation is in standard form.
\frac{81a}{81}=\frac{-9b-c-2}{81}
Divide both sides by 81.
a=\frac{-9b-c-2}{81}
Dividing by 81 undoes the multiplication by 81.
a=-\frac{b}{9}-\frac{c}{81}-\frac{2}{81}
Divide -2-9b-c by 81.
a\times 81+b\times 9+c=-2
Calculate 9 to the power of 2 and get 81.
b\times 9+c=-2-a\times 81
Subtract a\times 81 from both sides.
b\times 9=-2-a\times 81-c
Subtract c from both sides.
b\times 9=-2-81a-c
Multiply -1 and 81 to get -81.
9b=-81a-c-2
The equation is in standard form.
\frac{9b}{9}=\frac{-81a-c-2}{9}
Divide both sides by 9.
b=\frac{-81a-c-2}{9}
Dividing by 9 undoes the multiplication by 9.
b=-\frac{c}{9}-9a-\frac{2}{9}
Divide -2-81a-c by 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}