Solve for a
a=\frac{3000}{7240-b_{0}}
b_{0}\neq 7240
Solve for b_0
b_{0}=7240-\frac{3000}{a}
a\neq 0
Share
Copied to clipboard
800a-ab_{0}+\left(8a-a\right)\left(1200-280\right)=3000
Use the distributive property to multiply a by 800-b_{0}.
800a-ab_{0}+7a\left(1200-280\right)=3000
Combine 8a and -a to get 7a.
800a-ab_{0}+7a\times 920=3000
Subtract 280 from 1200 to get 920.
800a-ab_{0}+6440a=3000
Multiply 7 and 920 to get 6440.
7240a-ab_{0}=3000
Combine 800a and 6440a to get 7240a.
\left(7240-b_{0}\right)a=3000
Combine all terms containing a.
\frac{\left(7240-b_{0}\right)a}{7240-b_{0}}=\frac{3000}{7240-b_{0}}
Divide both sides by 7240-b_{0}.
a=\frac{3000}{7240-b_{0}}
Dividing by 7240-b_{0} undoes the multiplication by 7240-b_{0}.
800a-ab_{0}+\left(8a-a\right)\left(1200-280\right)=3000
Use the distributive property to multiply a by 800-b_{0}.
800a-ab_{0}+7a\left(1200-280\right)=3000
Combine 8a and -a to get 7a.
800a-ab_{0}+7a\times 920=3000
Subtract 280 from 1200 to get 920.
800a-ab_{0}+6440a=3000
Multiply 7 and 920 to get 6440.
7240a-ab_{0}=3000
Combine 800a and 6440a to get 7240a.
-ab_{0}=3000-7240a
Subtract 7240a from both sides.
\left(-a\right)b_{0}=3000-7240a
The equation is in standard form.
\frac{\left(-a\right)b_{0}}{-a}=\frac{3000-7240a}{-a}
Divide both sides by -a.
b_{0}=\frac{3000-7240a}{-a}
Dividing by -a undoes the multiplication by -a.
b_{0}=7240-\frac{3000}{a}
Divide 3000-7240a by -a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}