Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\left(3a+a\sqrt{2}\right)\left(3-\sqrt{2}\right)
Use the distributive property to multiply a by 3+\sqrt{2}.
9a-3\sqrt{2}a+3a\sqrt{2}-a\left(\sqrt{2}\right)^{2}
Apply the distributive property by multiplying each term of 3a+a\sqrt{2} by each term of 3-\sqrt{2}.
9a-a\left(\sqrt{2}\right)^{2}
Combine -3\sqrt{2}a and 3a\sqrt{2} to get 0.
9a-a\times 2
The square of \sqrt{2} is 2.
9a-2a
Multiply -1 and 2 to get -2.
7a
Combine 9a and -2a to get 7a.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(3a+a\sqrt{2}\right)\left(3-\sqrt{2}\right))
Use the distributive property to multiply a by 3+\sqrt{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(9a-3\sqrt{2}a+3a\sqrt{2}-a\left(\sqrt{2}\right)^{2})
Apply the distributive property by multiplying each term of 3a+a\sqrt{2} by each term of 3-\sqrt{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(9a-a\left(\sqrt{2}\right)^{2})
Combine -3\sqrt{2}a and 3a\sqrt{2} to get 0.
\frac{\mathrm{d}}{\mathrm{d}a}(9a-a\times 2)
The square of \sqrt{2} is 2.
\frac{\mathrm{d}}{\mathrm{d}a}(9a-2a)
Multiply -1 and 2 to get -2.
\frac{\mathrm{d}}{\mathrm{d}a}(7a)
Combine 9a and -2a to get 7a.
7a^{1-1}
The derivative of ax^{n} is nax^{n-1}.
7a^{0}
Subtract 1 from 1.
7\times 1
For any term t except 0, t^{0}=1.
7
For any term t, t\times 1=t and 1t=t.