Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

2a-ax+3\left(x+6\right)=10-4\left(6+bx\right)
Use the distributive property to multiply a by 2-x.
2a-ax+3x+18=10-4\left(6+bx\right)
Use the distributive property to multiply 3 by x+6.
2a-ax+3x+18=10-24-4bx
Use the distributive property to multiply -4 by 6+bx.
2a-ax+3x+18=-14-4bx
Subtract 24 from 10 to get -14.
2a-ax+18=-14-4bx-3x
Subtract 3x from both sides.
2a-ax=-14-4bx-3x-18
Subtract 18 from both sides.
2a-ax=-32-4bx-3x
Subtract 18 from -14 to get -32.
\left(2-x\right)a=-32-4bx-3x
Combine all terms containing a.
\left(2-x\right)a=-4bx-3x-32
The equation is in standard form.
\frac{\left(2-x\right)a}{2-x}=\frac{-4bx-3x-32}{2-x}
Divide both sides by 2-x.
a=\frac{-4bx-3x-32}{2-x}
Dividing by 2-x undoes the multiplication by 2-x.
a=-\frac{4bx+3x+32}{2-x}
Divide -32-4bx-3x by 2-x.
2a-ax+3\left(x+6\right)=10-4\left(6+bx\right)
Use the distributive property to multiply a by 2-x.
2a-ax+3x+18=10-4\left(6+bx\right)
Use the distributive property to multiply 3 by x+6.
2a-ax+3x+18=10-24-4bx
Use the distributive property to multiply -4 by 6+bx.
2a-ax+3x+18=-14-4bx
Subtract 24 from 10 to get -14.
-14-4bx=2a-ax+3x+18
Swap sides so that all variable terms are on the left hand side.
-4bx=2a-ax+3x+18+14
Add 14 to both sides.
-4bx=2a-ax+3x+32
Add 18 and 14 to get 32.
\left(-4x\right)b=32+2a+3x-ax
The equation is in standard form.
\frac{\left(-4x\right)b}{-4x}=\frac{32+2a+3x-ax}{-4x}
Divide both sides by -4x.
b=\frac{32+2a+3x-ax}{-4x}
Dividing by -4x undoes the multiplication by -4x.
b=\frac{a}{4}-\frac{\frac{a}{2}+8}{x}-\frac{3}{4}
Divide 32+2a-ax+3x by -4x.
2a-ax+3\left(x+6\right)=10-4\left(6+bx\right)
Use the distributive property to multiply a by 2-x.
2a-ax+3x+18=10-4\left(6+bx\right)
Use the distributive property to multiply 3 by x+6.
2a-ax+3x+18=10-24-4bx
Use the distributive property to multiply -4 by 6+bx.
2a-ax+3x+18=-14-4bx
Subtract 24 from 10 to get -14.
2a-ax+18=-14-4bx-3x
Subtract 3x from both sides.
2a-ax=-14-4bx-3x-18
Subtract 18 from both sides.
2a-ax=-32-4bx-3x
Subtract 18 from -14 to get -32.
\left(2-x\right)a=-32-4bx-3x
Combine all terms containing a.
\left(2-x\right)a=-4bx-3x-32
The equation is in standard form.
\frac{\left(2-x\right)a}{2-x}=\frac{-4bx-3x-32}{2-x}
Divide both sides by 2-x.
a=\frac{-4bx-3x-32}{2-x}
Dividing by 2-x undoes the multiplication by 2-x.
a=-\frac{4bx+3x+32}{2-x}
Divide -32-4bx-3x by 2-x.
2a-ax+3\left(x+6\right)=10-4\left(6+bx\right)
Use the distributive property to multiply a by 2-x.
2a-ax+3x+18=10-4\left(6+bx\right)
Use the distributive property to multiply 3 by x+6.
2a-ax+3x+18=10-24-4bx
Use the distributive property to multiply -4 by 6+bx.
2a-ax+3x+18=-14-4bx
Subtract 24 from 10 to get -14.
-14-4bx=2a-ax+3x+18
Swap sides so that all variable terms are on the left hand side.
-4bx=2a-ax+3x+18+14
Add 14 to both sides.
-4bx=2a-ax+3x+32
Add 18 and 14 to get 32.
\left(-4x\right)b=32+2a+3x-ax
The equation is in standard form.
\frac{\left(-4x\right)b}{-4x}=\frac{32+2a+3x-ax}{-4x}
Divide both sides by -4x.
b=\frac{32+2a+3x-ax}{-4x}
Dividing by -4x undoes the multiplication by -4x.
b=\frac{a}{4}-\frac{\frac{a}{2}+8}{x}-\frac{3}{4}
Divide 2a-ax+3x+32 by -4x.