Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{4bx+3x+32}{2-x}\text{, }&x\neq 2\\a\in \mathrm{C}\text{, }&b=-\frac{19}{4}\text{ and }x=2\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{ax-3x-2a-32}{4x}\text{, }&x\neq 0\\b\in \mathrm{C}\text{, }&x=0\text{ and }a=-16\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{4bx+3x+32}{2-x}\text{, }&x\neq 2\\a\in \mathrm{R}\text{, }&b=-\frac{19}{4}\text{ and }x=2\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{ax-3x-2a-32}{4x}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&x=0\text{ and }a=-16\end{matrix}\right.
Graph
Share
Copied to clipboard
2a-ax+3\left(x+6\right)=10-4\left(6+bx\right)
Use the distributive property to multiply a by 2-x.
2a-ax+3x+18=10-4\left(6+bx\right)
Use the distributive property to multiply 3 by x+6.
2a-ax+3x+18=10-24-4bx
Use the distributive property to multiply -4 by 6+bx.
2a-ax+3x+18=-14-4bx
Subtract 24 from 10 to get -14.
2a-ax+18=-14-4bx-3x
Subtract 3x from both sides.
2a-ax=-14-4bx-3x-18
Subtract 18 from both sides.
2a-ax=-32-4bx-3x
Subtract 18 from -14 to get -32.
\left(2-x\right)a=-32-4bx-3x
Combine all terms containing a.
\left(2-x\right)a=-4bx-3x-32
The equation is in standard form.
\frac{\left(2-x\right)a}{2-x}=\frac{-4bx-3x-32}{2-x}
Divide both sides by 2-x.
a=\frac{-4bx-3x-32}{2-x}
Dividing by 2-x undoes the multiplication by 2-x.
a=-\frac{4bx+3x+32}{2-x}
Divide -32-4bx-3x by 2-x.
2a-ax+3\left(x+6\right)=10-4\left(6+bx\right)
Use the distributive property to multiply a by 2-x.
2a-ax+3x+18=10-4\left(6+bx\right)
Use the distributive property to multiply 3 by x+6.
2a-ax+3x+18=10-24-4bx
Use the distributive property to multiply -4 by 6+bx.
2a-ax+3x+18=-14-4bx
Subtract 24 from 10 to get -14.
-14-4bx=2a-ax+3x+18
Swap sides so that all variable terms are on the left hand side.
-4bx=2a-ax+3x+18+14
Add 14 to both sides.
-4bx=2a-ax+3x+32
Add 18 and 14 to get 32.
\left(-4x\right)b=32+2a+3x-ax
The equation is in standard form.
\frac{\left(-4x\right)b}{-4x}=\frac{32+2a+3x-ax}{-4x}
Divide both sides by -4x.
b=\frac{32+2a+3x-ax}{-4x}
Dividing by -4x undoes the multiplication by -4x.
b=\frac{a}{4}-\frac{\frac{a}{2}+8}{x}-\frac{3}{4}
Divide 32+2a-ax+3x by -4x.
2a-ax+3\left(x+6\right)=10-4\left(6+bx\right)
Use the distributive property to multiply a by 2-x.
2a-ax+3x+18=10-4\left(6+bx\right)
Use the distributive property to multiply 3 by x+6.
2a-ax+3x+18=10-24-4bx
Use the distributive property to multiply -4 by 6+bx.
2a-ax+3x+18=-14-4bx
Subtract 24 from 10 to get -14.
2a-ax+18=-14-4bx-3x
Subtract 3x from both sides.
2a-ax=-14-4bx-3x-18
Subtract 18 from both sides.
2a-ax=-32-4bx-3x
Subtract 18 from -14 to get -32.
\left(2-x\right)a=-32-4bx-3x
Combine all terms containing a.
\left(2-x\right)a=-4bx-3x-32
The equation is in standard form.
\frac{\left(2-x\right)a}{2-x}=\frac{-4bx-3x-32}{2-x}
Divide both sides by 2-x.
a=\frac{-4bx-3x-32}{2-x}
Dividing by 2-x undoes the multiplication by 2-x.
a=-\frac{4bx+3x+32}{2-x}
Divide -32-4bx-3x by 2-x.
2a-ax+3\left(x+6\right)=10-4\left(6+bx\right)
Use the distributive property to multiply a by 2-x.
2a-ax+3x+18=10-4\left(6+bx\right)
Use the distributive property to multiply 3 by x+6.
2a-ax+3x+18=10-24-4bx
Use the distributive property to multiply -4 by 6+bx.
2a-ax+3x+18=-14-4bx
Subtract 24 from 10 to get -14.
-14-4bx=2a-ax+3x+18
Swap sides so that all variable terms are on the left hand side.
-4bx=2a-ax+3x+18+14
Add 14 to both sides.
-4bx=2a-ax+3x+32
Add 18 and 14 to get 32.
\left(-4x\right)b=32+2a+3x-ax
The equation is in standard form.
\frac{\left(-4x\right)b}{-4x}=\frac{32+2a+3x-ax}{-4x}
Divide both sides by -4x.
b=\frac{32+2a+3x-ax}{-4x}
Dividing by -4x undoes the multiplication by -4x.
b=\frac{a}{4}-\frac{\frac{a}{2}+8}{x}-\frac{3}{4}
Divide 2a-ax+3x+32 by -4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}