Solve for a
a=e^{\frac{t}{20}}
Solve for t
t=20\ln(a)
a>0
Share
Copied to clipboard
e^{-\frac{t}{20}}a=1
The equation is in standard form.
\frac{e^{-\frac{t}{20}}a}{e^{-\frac{t}{20}}}=\frac{1}{e^{-\frac{t}{20}}}
Divide both sides by e^{-0.05t}.
a=\frac{1}{e^{-\frac{t}{20}}}
Dividing by e^{-0.05t} undoes the multiplication by e^{-0.05t}.
a=e^{\frac{t}{20}}
Divide 1 by e^{-0.05t}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}